Если я правильно поняла, то тебя интересует как найти последнюю цифру в числе, которое находится в большой степени? Каждое число будет иметь свои 4-ре окончания, которые будут постоянно повторятся Пример: 2*(2)= (4)*2=(8)*2=1(6)*2=32 У 2-ки будут повторятся 2, 4 8, 6 То есть 2^21 (2 в 21 степени) = 21/4=5 целых и 1/4(из чего заключаем, что это число будет 2). Для 2^23 (2 в 23 степени) 5 целых и 3/4(из чего заключаем, что это 3-тее число и = 8 ) Для двухзначных и выше, берём просто последнее число и берём делаем то же самое, что и в 1-м случае: Например число 57 : последнее в нём число 7 значит считаем окончания: 7*(7)=4(9)*7= 34(3)*7=240(1)*7 следовательно 7 9 3 1 . Например для 7^10 считаем 10/4= 2 целых и 2/4 - из чего заключаем, что окончание будет 9-ка. На всякий случай: для числа 1 и 5, эти окончания всегда равны 1 и 5 ;) На практике срабатывает.
1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем 5 сантиметров. C
6
Можно сделать иначе: мы умеем откладывать
4 см и 1 см, так что можно отложить их подряд
и получить 5 cм. Ещё один так что достаточно отложить 3 раза по 11 см и потом 4 раза по 7 в другую сторону. (Преимущество
приведённого сначала в том, что он годится
для любого целого числа сантиметров.)