Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.
♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡
Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Шёлк зародился в Китае. Мифы о шёлке: Впервые секрет изготовления шелка был открыт в Китае пять тысяч лет назад. Древняя легенда гласит, что однажды 14-летняя Си Линг Чи, жена третьего императора Китая Хуан Ди, которого называли еще «Желтым императором» , в саду дворца под кроной тутового дерева пила чай и в ее чашку с чаем с дерева упал кокон шелкопряда. Юная императрица и ее служанки были крайне удивлены, увидев, как в горячей воде кокон начал разворачиваться, выпустив тонкую шелковую нить. Заинтересовавшись, девушка стала наблюдать, как разворачивался кокон. Си Линг Чи была так поражена красотой и прочностью шелковой нити, что собрала тысячи коконов и из них соткала императору одежду. Так крошечная бабочка-шелкопряд подарила всему человечеству шелк, а императрица в благодарность за столь ценный подарок была возведена в ранг божества.
☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆
Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.
♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡
Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆