14. y' = 3x^2 - 6(a + 2)x + 3 = 3(x^2 - 2(a + 2)x + 1) должно быть больше нуля для всех, это выполнится, если дискриминант трехчлена, стоящего в скобах, будет меньше нуля. D/4 = (a + 2)^2 - 1 < 0 -1 < a + 2 < 1 -3 < a < -1 Сумма = -2
15. Т.к. корень - величина неотрицательная, решение - все точки, для которых 2 - x - x^2 > 0 (тогда корень существует и не равен нулю) и x + 5 > 0. Для всех точек решения первого неравенства (-2, 1) второе неравенство выполняется. ответ. (-2, 1)
23. Количество нулей (без учета кратностей) такое же, как и у функции g = sin(2x + pi/4). При изменении x: 0 -> 3pi аргумент синуса изменяется на 6pi, т.е. на 3 периода. Т.к. x = 0 и x = 3pi - не нули, то всего нулей в 3 раза больше, чем на одном периоде. Ну, а как известно, на [0, 2pi) синус обнуляется 2 раза. ответ. 6
27. Пусть tg x = 2, 0 < x < pi/2. Необходимо найти sin(2x). Найдем сначала cos^2(x), sin^2(x). Т.к. 1 + tg^2(x) = 1/cos^2(x), то cos^2(x) = 1/(1 + 2^2) = 1/5 и sin^2(x) = 1 - 1/5 = 4/5. sin^2(2x) = 4sin^2(x)cos^2(x) = 16/25 Т.к. sin(2x) > 0 при 0 < x < pi/2, то sin(2x) = +sqrt(16/25) = 4/5
|3-2x|<x+1 Поскольку выражение под знаком модуля может иметь разные знаки, то рассматриваем два случая 1) 3-2x≥0 Найдем, при каких значениях х это выполняется -2x≥-3 Делим на -2. При делении на отрицательное число знак неравенства меняется. x≤1.5 По определению модуля |3-2x|=3-2x Тогда исходное выражение принимает вид 3-2x<x+1 -3x<-2 x<2/3 Следовательно Решение в этом случае: x∈(2/3;1.5] 2) 3-2x<0 -2x<-3 x>1.5 По определению модуля |3-2x|=-(3-2x)=2x-3 Тогда исходное выражение принимает вид 2x-3<x+1 x<4 Следовательно Решение в этом случае: x∈(1.5;4) Окончательное решение: x∈(2/3;1.5]U(1.5;4) x∈(2/3;4) Целые решения: 1,2,3 Все они принадлежат указанному отрезку [0;4]. Их число: 3 ответ: 3
Второй Число целых чисел на отрезке [0;4] всего 5. Это 0,1,2,3,4 Можно просто подставить их в данное неравенство и проверить, какие подходят 1) х=0 |3-2*0|<0+1 3<1 - неверно 2) х=1 |3-2*1|<1+1 1<2 - верно 3) х=2 |3-2*2|<2+1 1<3 - верно 4) х=3 |3-2*3|<3+1 3<4 - верно 5) х=4 |3-2*4|<4+1 5<5 - неверно Итого, три правильных решения ответ: 3
D/4 = (a + 2)^2 - 1 < 0
-1 < a + 2 < 1
-3 < a < -1
Сумма = -2
15. Т.к. корень - величина неотрицательная, решение - все точки, для которых 2 - x - x^2 > 0 (тогда корень существует и не равен нулю) и x + 5 > 0.
Для всех точек решения первого неравенства (-2, 1) второе неравенство выполняется.
ответ. (-2, 1)
23. Количество нулей (без учета кратностей) такое же, как и у функции g = sin(2x + pi/4). При изменении x: 0 -> 3pi аргумент синуса изменяется на 6pi, т.е. на 3 периода. Т.к. x = 0 и x = 3pi - не нули, то всего нулей в 3 раза больше, чем на одном периоде. Ну, а как известно, на [0, 2pi) синус обнуляется 2 раза.
ответ. 6
27. Пусть tg x = 2, 0 < x < pi/2. Необходимо найти sin(2x).
Найдем сначала cos^2(x), sin^2(x).
Т.к. 1 + tg^2(x) = 1/cos^2(x), то cos^2(x) = 1/(1 + 2^2) = 1/5 и sin^2(x) = 1 - 1/5 = 4/5.
sin^2(2x) = 4sin^2(x)cos^2(x) = 16/25
Т.к. sin(2x) > 0 при 0 < x < pi/2, то sin(2x) = +sqrt(16/25) = 4/5