М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
HappyGamerPro
HappyGamerPro
07.04.2023 14:01 •  Математика

1)знайти область визначення функції y=√1-2cos 2) знайдіть похідну функції f(x)=під одним коренем все√2+√3 потім = 1 риска дробу (2х-1)²

👇
Открыть все ответы
Ответ:
aliolga
aliolga
07.04.2023
14. y' = 3x^2 - 6(a + 2)x + 3 = 3(x^2 - 2(a + 2)x + 1) должно быть больше нуля для всех, это выполнится, если дискриминант трехчлена, стоящего в скобах, будет меньше нуля.
D/4 = (a + 2)^2 - 1 < 0
-1 < a + 2 < 1
-3 < a < -1
Сумма = -2

15. Т.к. корень - величина неотрицательная, решение - все точки, для которых 2 - x - x^2 > 0 (тогда корень существует и не равен нулю) и x + 5 > 0.
Для всех точек решения первого неравенства (-2, 1) второе неравенство выполняется.
ответ. (-2, 1)

23. Количество нулей (без учета кратностей)  такое же, как и у функции g = sin(2x + pi/4). При изменении x: 0 -> 3pi аргумент синуса изменяется на 6pi, т.е. на 3 периода. Т.к. x = 0 и x = 3pi - не нули, то всего нулей в 3 раза больше, чем на одном периоде. Ну, а как известно, на [0, 2pi) синус обнуляется 2 раза.
ответ. 6

27. Пусть tg x = 2, 0 < x < pi/2. Необходимо найти sin(2x).
Найдем сначала cos^2(x), sin^2(x).
Т.к. 1 + tg^2(x) = 1/cos^2(x), то cos^2(x) = 1/(1 + 2^2) = 1/5 и sin^2(x) = 1 - 1/5 = 4/5.
sin^2(2x) = 4sin^2(x)cos^2(x) = 16/25
Т.к. sin(2x) > 0 при 0 < x < pi/2, то sin(2x) = +sqrt(16/25) = 4/5
4,5(75 оценок)
Ответ:
elmaz5
elmaz5
07.04.2023
|3-2x|<x+1
Поскольку выражение под знаком модуля может иметь разные знаки, то рассматриваем два случая
1) 3-2x≥0
Найдем, при каких значениях х это выполняется
-2x≥-3
Делим на -2. При делении на отрицательное число знак неравенства меняется.
x≤1.5
По определению модуля
|3-2x|=3-2x
Тогда исходное выражение принимает вид
3-2x<x+1
-3x<-2
x<2/3
Следовательно
\left \{ {{x \leq 1.5} \atop {x \frac{2}{3}}} \right.
Решение в этом случае:
x∈(2/3;1.5]
2) 3-2x<0
-2x<-3
x>1.5
По определению модуля
|3-2x|=-(3-2x)=2x-3
Тогда исходное выражение принимает вид
2x-3<x+1
x<4
Следовательно
\left \{ {{x1.5} \atop {x<4}} \right.
Решение в этом случае:
x∈(1.5;4)
Окончательное решение:
x∈(2/3;1.5]U(1.5;4)
x∈(2/3;4)
Целые решения:
1,2,3
Все они принадлежат указанному отрезку [0;4]. Их число: 3
ответ: 3

Второй
Число целых чисел на отрезке  [0;4] всего 5. Это 0,1,2,3,4
Можно просто подставить их в данное неравенство и проверить, какие подходят
1) х=0
|3-2*0|<0+1
3<1 - неверно
2) х=1
|3-2*1|<1+1
1<2 - верно
3) х=2
|3-2*2|<2+1
1<3 - верно
4) х=3
|3-2*3|<3+1
3<4 - верно
5) х=4
|3-2*4|<4+1
5<5 - неверно
Итого, три правильных решения
ответ: 3
4,5(44 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ