Функция определена и непрерывна на всей числовой прямой. Найдём критические значения, для чего найдём вторую производную и приравняем её к 0: y'=(2x³-3x²-12x+8)'=6x²-6x-12 y''=(6x²-6x-12)'=12x-6 12x-6=0 12x=6 x=6/12=1/2 Определим знаки второй производной на интервалах (-∞;1/2) и (1/2;∞) методом интервалов - + (1/2) Получается, что график самой функции y=2x³-3x²-12x+8 является выпуклым на интервале (-∞;1/2) и вогнутым на интервале (1/2;∞). При переходе через х=1/2 вторая производная меняет знак, поэтому в данной точке существует перегиб графика. Найдём ординату: f(1/2)=2*(1/2)³-3*(1/2)²-12*(1/2)+8=1/4-3/4-6+8=6/4=3/2
ответ: график функции выпукл на интервале (-∞;1/2) и вогнут на интервале (1/2;∞), в точке (1/2;3/2) существует перегиб графика.
их абсолютные величины и перед суммой ставится общий знак.
П р и м е р ы :
( + 6 ) + ( + 5 ) = 11 ;
( – 6 ) + ( – 5 ) = – 11 .
2) при сложении двух чисел с разными знаками их абсолютные
величины вычитаются ( из большей меньшая ) и ставится знак
числа с большей абсолютной величиной.
П р и м е р ы :
( – 6 ) + ( + 9 ) = 3 ;
( – 6 ) + ( + 3 ) = – 3 .
Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.
П р и м е р ы :
( + 8 ) – ( + 5 ) = ( + 8 ) + ( – 5 ) = 3;
( + 8 ) – ( – 5 ) = ( + 8 ) + ( + 5 ) = 13;
( – 8 ) – ( – 5 ) = ( – 8 ) + ( + 5 ) = – 3;
( – 8 ) – ( + 5 ) = ( – 8 ) + ( – 5 ) = – 13;