1125
Пошаговое объяснение:
(-250)*(-159.8/4.7+29.5)
Первое действие в скобках, причем сначала деление, а потом сложение:
(-250)*(-159.8/4.7+29.5)=(-250)*(-34+29,5)=(-250)*(-4,5)=1125
В предпоследнем действии умножение отрицательного числа на отрицательное (в итоге будет положительное число)
Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
Ищем производную первого порядка, анализируем монотонность функции. Ищем значения от -2 и 0, а также от минимума или максимума, который входит в этот промежуток.
Пошаговое объяснение:
f'(x)=4x³-4x+0
f'(x)=4x(x²-1)
4x(x²-1)≥0
Ищем корни:
x=0 и x²=1 ⇒ x= +1 | -1
Рисуем координатную прямую , с метода интервалов устанавливаем знаки. На промежутке от минус бесконечности до -1 функция спадает, а от -1 до 0 возрастает. х = 1 есть минимум.(Там , где будет минус- функция спадает, а там, где плюс - возрастает)
Находим значения в точках(Подставляем в самое первое уравнение) -2, 0, -1 :
f(-2)=16-8+2=10 - МАКСИМАЛЬНОЕ ЗНАЧЕНИЕ
f(0)=0-0+2=2
f(-1)=1-2+2=1 -МИНИМАЛЬНОЕ ЗНАЧЕНИЕ
1125
Пошаговое объяснение:
(-250)*(-34+29,5)=
(-250)*(-4,5)=
1125