Первое - приводим к общему знаменателю, делаем действия с числителями, оставляя общий знаменатель сложим 3/8+3/5 1) приводим к общему знаменателю 3/8=15/40 3/5=24/40 2) складываем числители при общем знаменателе (15+24)/40=39/40 при необходимости сокращаем, выделяем целую часть и т.д. сложим 17/20+15/16 17/20=68/80 15/16=75/80 (68+75)/80=143/80=1 63/80 вычтем 15/16-3/4 здесь общий знаменатель 16, значит к нему приводим только 3/4=12/16 (15-12)/16=3/16 вычтем 1/2-4/5 1/2=5/10 4/5=8/10 (5-8)/10=-3/10 может, не очень понятно, но я не учитель. Объяснил, как смог!
Х девочек всего в классе у мальчиков всего в классе 1/3 от х = х/3 девочек участвовало в конкурсе у/5 мальчиков участвовало в конкурсе (х + у) всего учеников в классе (х + у)/4 всего учеников участвовало в конкурсе Получаем уравнение х/3 + у/5 = (х + у)/4 и неравенство 30< (x + y) < 40 Решаем уравнение Приведя к общему знаменателю 60, получим 20х + 12у = 15*(х + у) 20х + 12у = 15х + 15у 20х - 15х = 15у - 12у 5х = 3у х = 3у/5 Далее решаем подбора, где у/5 - целое число При у₁ = 5 получаем х₁ = 3 , сумма 5 + 3 = 8, не удовлетворяет условию 30< (x + y) < 40 При у₂ = 10 получаем х₂ = 6 , сумма 10 + 6 = 16, не удовлетворяет условию 30< (x + y) < 40 При у₃ = 15 получаем х₃ = 9, сумма 15 + 9 = 24, не удовлетворяет условию 30< (x + y) < 40 При у₄ = 20 получаем х₄ = 12 , сумма 20 + 12 = 32, удовлетворяет условию 30< (x + y) < 40 Значит, в классе 12 девочек и 20 мальчиков 20 - 12 = 8 ответ: в классе на 8 мальчиков больше, чем девочек.
сложим 3/8+3/5
1) приводим к общему знаменателю
3/8=15/40 3/5=24/40
2) складываем числители при общем знаменателе
(15+24)/40=39/40
при необходимости сокращаем, выделяем целую часть и т.д.
сложим 17/20+15/16
17/20=68/80 15/16=75/80
(68+75)/80=143/80=1 63/80
вычтем 15/16-3/4 здесь общий знаменатель 16, значит к нему приводим только 3/4=12/16
(15-12)/16=3/16
вычтем 1/2-4/5
1/2=5/10 4/5=8/10
(5-8)/10=-3/10
может, не очень понятно, но я не учитель. Объяснил, как смог!