Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.
Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.
Пошаговое объяснение:
1.) 9-1/6x=8 1/5
1/6х= 9 - 8 1/5
1/6х= 4/5
х= 4/5 : (1/6)
х= 24/5
х= 4 4/5
2)1 4/5x+2/5=4
9/5х= 4 - 2/5
9/5х= 3 3/5
х= 18/5 : 9/5
х= 18/5 * 5/9
х= 2