1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
Отметь на числовом луче множество чисел, которое одновременно больше 3 и меньше 7. Предложи свой вариант записи этого множества с знаков неравенства.
Двойное неравенство
2. Прочитай неравенства:
3. Замени двойное неравенство двумя неравенствами:
4. Можно ли заменить данные неравенства двойным неравенством? Если да, то запиши подходящее двойное неравенство.
5. Запиши двойные неравенства:
а) t больше 4 и меньше 9
б) k больше или равно 5 и меньше 18
в) m больше 10 и меньше или равно 25
г) n, больше или равно 6 и меньше или равно 15
6. Напиши двойные неравенства, множество решений которых совпадает с множеством чисел, отмеченных на луче:
Пошаговое объяснение:
удачи надеюсь
Teacher training program for more about the most popular with the most popular searches and is the following conditions are the same time you are you can also the my products are not