<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см
в строке справа 4-я;
в строке слева 5-я ;
в столбце сверху --- 2-я;
в столбце снизу ?
Решение.
4 - 1 = 3 кл. число клеток справа, так как сама клякса в 4-ой справа.
5 - 1 = 4 кл. число клеток слева, так как сама клякса в 5-ой слева.
3 + 4 + 1 = 8 кл. всего клеток по горизонтали (3 справа, 4 слева и клетка с кляксой).
8 кл. гориз. = 8кл. верт. так как по условию у Вовочки квадрат;
8 - 2 = 6 кл вниз от кляксы, так как она на второй клетке сверху из 8;
Значит, клякса на 7-ой клетке, если считать снизу.
ответ: клякса на седьмой клетке снизу.
Проверка: Нарисуем по нашим данным квадрат 8х8 с кляксой:
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ® ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ
ₐ ₐ ₐ ₐ ₐ ₐ ₐ ₐ