Проведём радиусы OA и OB. Рассмотрим треугольник OAB. Угол AOB является центральным и опирается на дугу, равную 134°. Центральный угол равен дуге на которую он опирается, значит, угол AOB = 134°. Треугольник OAB - равнобедренный, т.к. OA = OB (как радиусы). Углы при основании равнобедренного треугольника равны, т.е. ∠ OAB = ∠ OBA = (180° - 134°)/2 = 23°. Так как радиус, проведённый в точку касания, перпендикулярен касательной, то угол OBC – прямой. ∠ABC = ∠ OBC - ∠ OBA = 90° - 23° = 67° Или есть другой вариант Угол ABC=1/2дугиAB Угол ABC=1/2*134° Угол ABC=67° ответ:67°
327+81=408книг
ответ всего в библиотеке 408книг