составить уравнение гиперболы фокусы которой расположены на оси абсцисс симметрично относительно начала координат расстояние между фокусами 10 полуось b=4
1й Пусть было х блоков, тогда: х-1/2х-(1/2)(5/9)х=8; 1/2х-5/18х=8; 9/18х-5/18х=8; 4/18х=8; х=8÷4/18; х=8×18/4; х=36. 36×(1/2)=18(блоков)-1й мальчик; 18×(5/9)=10(блоков)-2й мальчик; (18+8)÷10=26÷10=2.6=2_3/5(раза)-во столько больше положили 1й и 3й малики больше блоков, чем 2й.
2й 1-1/2=1/2(блоков)-ост.после первого мальчика; 1/2 × 5/9=5/18(блоков)-использовал 2й мальчик; 1/2+5/18=9/18+5/18=14/18(блоков)-использовали 1й и 2й мальчики; 1- 14/18=18/18 - 14/18=4/18(блоков)-использовал 3й мальчик; 8÷4×18=36(блоков)-было всего. 36×(1/2)=18(блоков)-1й мальчик; 18×(5/9)=10(блоков)-2й мальчик; (18+8)÷10=26÷10=2.6=2_3/5(раза)-во столько больше положили 1й и 3й малики больше блоков, чем 2й.
Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
Расстояние между фокусами гиперболы F₁(-c; 0); F₂(c; 0) равно 10, значит, 2с=10, с=5, с=√(а²+b²)⇒а²=25-16=9,
уравнение гиперболы
x²/а²-y²/b²=1
x²/9-y²/16=1