Вместо полярности точки можно определить взаимное расположение точки М и окружности x² + y² -3x - 4y - 8 = 0.
Приведём уравнение окружности к каноническому виду.
x² + y² -3x - 4y - 8 = (x² - 2*1,5x + 2,25) - 2,25 + (y² - 2*2y + 4) - 4 - 8 =
= (x - 1,5)² + (y - 2)² = 14,25.
Это уравнение окружности с центром в точке О(1,5; 2).
Радиус равен √14,25.
Теперь найдём расстояние ОМ.
ОМ = √((4 - 1,5)² + (5 - 2)² = √(6,25 + 9) = √15,25.
Отсюда видим, что точка М находится за пределами окружности:
√15,25 > √14,25.
ответ: точка М лежит вне окружности.
ответ: 11 2/5 метра.
Пошаговое объяснение:
Дано. От куска шелковой ткани отрезали 6 3/5 м
потом ещё 3 3/10м,
после чего осталось 1 1/2м.
Сколько всего метров шёлка было в куске?
Решение.
Пусть в куске было х метров шёлка
1) отрезали 6 3/5 м. Осталось - х- 6 3/5 м шёлка.
ещё отрезали 3 3/10 м. Осталось х-6 3/5 - 3 3/10 = х- 9 (6+3)/10 =
= х- 9 9/10 метра, что составило 1 1/2 м.
х-9 9/10 = 1 1/2.
х= 1 1/2 + 9 9/10.
х= 10 (5+9)/10=10 14/10= 11 4/10 = 11 2/5 метра было в куске шёлка.