1)Найдем скалярное произведение двух векторов
\overrightarrow{a}\cdot \overrightarrow{b}=3\cdot 4+4\cdot 5+5\cdot(-3)=12+20-15=17
Найдем длины векторов а и b
|\overrightarrow{a}|=\sqrt{3^2+4^2+5^2}=\sqrt{50}=5\sqrt{2}\\ |\overrightarrow{b}|=\sqrt{4^2+5^2+(-3)^2}=\sqrt{50}=5\sqrt{2}
Найдем угол между векторами a и b
\cos\angle(\overrightarrow{a},\overrightarrow{b})=\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}}{|\overrightarrow{a}|\cdot |\overrightarrow{b}|}=\dfrac{17}{5\sqrt{2}\cdot 5\sqrt{2}}=0.34\\ \\ \\ \angle(\overrightarrow{a},\overrightarrow{b})=\arccos0.34
2)
х = 2
Пошаговое объяснение:
По хорошему, решением должно считаться следующее:
Эмпирическим путем (приблизительная оценка возможных значений х, оценка значений х, прикоторых левая часть явно больше чем 5 и пр.), мы видим, что
т.е. значение х равное 2 - является решением уравнения.
Вследствие свойства монотонности функций образованных от функции у = √х, и, соответственно, сохранения свойства одинаковой монотонности для суммы двух таких функций, функция,
монотонна, а именно монотонно возрастает, на всей области определения.
Следовательно каждому допустимому значению функции соответствует единственное значение аргумента, и наоборот.
Это означает, что на всей своей протяженности значение
y = 5
функция принимает только один раз, при одном единственном значении переменной х. И мы нашли это значение х = 2, а также показали, что других значений х быть не может. Следовательно, задача решена.
ответ: {2}