А6. На листе в клетку начертили прямоугольник и разделили его на 2 одинаковые части. Сторона клетки 1см. Отметь все верные утверждения. Каждая из двух частей представляет собой квадрат.
Периметр большого прямоугольника 36 см.
Площадь одной части 32 квадратных сантиметра.
Площадь одной части составляет половину площади прямоугольника.
Решение: Обозначим первое натуральное число: за (х), тогда согласно условия задачи, второе число равно: (х+3), третье число равно: (х+х+3+11)=(2х+14) Квадрат второго числа равен произведению первого и третьего: (х+3)^2=(x)*(2x+14) x^2+6x+9=2x^2+14x 2x^2+14x-x^2-6x-9=0 x^2+8x-9=0 x1,2=(-8+-D)/2*1 D=√(64-4*1*-9)=√(64+36)=√100=10 x1,2=(-8+-10)/2 x1=(-8+10)/2=2/2=1 х2=(-8-10)/2=18/2=-9 - не соответствует условию задачи Отсюда: первое число равно 1 второе число равно 1+3=4 третье число равно 1+4+11=16 Сумма трёх чисел равна: 1+4+16=21
Решение: Обозначим первое натуральное число: за (х), тогда согласно условия задачи, второе число равно: (х+3), третье число равно: (х+х+3+11)=(2х+14) Квадрат второго числа равен произведению первого и третьего: (х+3)^2=(x)*(2x+14) x^2+6x+9=2x^2+14x 2x^2+14x-x^2-6x-9=0 x^2+8x-9=0 x1,2=(-8+-D)/2*1 D=√(64-4*1*-9)=√(64+36)=√100=10 x1,2=(-8+-10)/2 x1=(-8+10)/2=2/2=1 х2=(-8-10)/2=18/2=-9 - не соответствует условию задачи Отсюда: первое число равно 1 второе число равно 1+3=4 третье число равно 1+4+11=16 Сумма трёх чисел равна: 1+4+16=21
Обозначим первое натуральное число:
за (х),
тогда согласно условия задачи,
второе число равно:
(х+3),
третье число равно:
(х+х+3+11)=(2х+14)
Квадрат второго числа равен произведению первого и третьего:
(х+3)^2=(x)*(2x+14)
x^2+6x+9=2x^2+14x
2x^2+14x-x^2-6x-9=0
x^2+8x-9=0
x1,2=(-8+-D)/2*1
D=√(64-4*1*-9)=√(64+36)=√100=10
x1,2=(-8+-10)/2
x1=(-8+10)/2=2/2=1
х2=(-8-10)/2=18/2=-9 - не соответствует условию задачи
Отсюда:
первое число равно 1
второе число равно 1+3=4
третье число равно 1+4+11=16
Сумма трёх чисел равна:
1+4+16=21