Все модели делим на три группы A9, B9 и C9 по 9.
1-взвешивание. Взвешиваем A9 и B9. Если A9<B9, то лёгкая модель в A9. Если A9>B9, то лёгкая модель в B9. Если A9=B9, то лёгкая модель в C9.
Берем группу с лёгкой моделью и делим её на три группы A3, B3 и C3 по 3.
2-взвешивание. Взвешиваем A3 и B3. Если A3<B3, то лёгкая модель в A3. Если A3>B3, то лёгкая модель в B3. Если A3=B3, то лёгкая модель в C3.
Берем группу с лёгкой моделью и делим её на три группы A1, B1 и C1 по 1.
3-взвешивание. Взвешиваем A1 и B1. Если A1<B1, то лёгкая модель A1. Если A1>B1, то лёгкая модель B1. Если A1=B1, то лёгкая модель C1.
ответ: 442,556,888,1001, к другому вопросу-20
Пошаговое объяснение:
Так как говориться, что каждая цифра цены в более дорогом варианте велосипеда должна быть больше, или больше цифр, то вернее будет написать первый вариант(442,556,888,1001). Но в этой задаче есть второй вопрос (Самый дешёвый велосипед стоит 741 рубль, самый дорогой - 89988рублей. Какое наибольшее число велосипедов может стоять в магазине? ), то будем решать по условию задачи: 741, 852, 963, 1000, 2111, 3222, 4333, 5444, 6555, 7666, 8777, 9888, 10000, 21111, 32222, 43333, 54444, 65555, 76666, 89988. Считаем сколько чисел у нас получилось, и в итоге у нас 20 велосипедов может стоять в магазине.ие:
ответ:3000деталей
Пошаговое объяснение:150*20=3000