М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ann396
ann396
09.10.2022 00:07 •  Математика

Угол А четырёхугольника ABCD, вписанного в окружность, равен 62°. Найдите величину
угла с этого четырёхугольника. ответ дайте
в градусах. Очень

👇
Открыть все ответы
Ответ:
vinogradovanactaxa
vinogradovanactaxa
09.10.2022
выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х) полностью определяется ее поведением в  интервале    0 < х < π/2 .Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.Составим следующую таблицу значений нашей функции;Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисункеПолученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х.1.Первую четверть окружности радиуса 1  разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы   соответствующих   углов.2.Первая  четверть   окружности соответствует углам от 0 до π/2. Поэтому на оси хвозьмем отрезок    [0 , π/2 ] и разделим его на 8 равных частей.3.Проведем прямые, параллельные оси х, а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.4.Точки пересечения соединим плавной  линией.Теперь обратимся к интервалу π/2 < х < π. 
Каждое  значение аргумента  х из этого  интервала   можно   представить   в   виде
x = π/2 + φгде 0 <φ < π/2 . По формулам приведенияsin ( π/2 + φ) = соsφ = sin ( π/2 — φ).Точки оси х с    абциссами π/2 + φ и  π/2 — φ   симметричны    друг другу относительно точки оси х с абсциссой π/2, и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [π/2 , π ] путем простого симметричного отображения графика этой функции в интервале  [0 , π/2] относительно прямой х = π/2.
4,5(95 оценок)
Ответ:
Alesha55551
Alesha55551
09.10.2022

Построим все эти графики в одной системе координат (см. вложение №1). Получившаяся фигура не является криволинейной трапецией, но, проведя прямую x = 1 (см. вложение №2), можно разбить её на две криволинейные трапеции, у каждой из которых можно найти площадь. Искомая площадь является суммой площадей двух составляющих эту фигуру криволинейных трапеций.

Итак, находим площадь левой криволинейной трапеции.

\displaystyle S_1 = \int\limits_0^1 \sqrt{x}\,\ dx\ =\ \int\limits_0^1x^{\frac{1}{2}}\,\ dx\ =\ \dfrac{2x^\frac{3}{2}}{3}\ \Bigg|_0^1\ = \dfrac{2\cdot 1}{3} - \dfrac{2\cdot 0}{3} = \bf{\dfrac{2}{3}}

Теперь находим площадь правой криволинейной трапеции.

\displaystyle S_2 = \int\limits_1^2(2-x)\,\ dx\ =\ 2x - \dfrac{x^2}{2}\ \Bigg|_1^2\ =2\cdot 2 - \dfrac{2^2}{2} - \left(2 - \dfrac{1}{2}\right) = 4 - 2 - 2 +\dfrac{1}{2} =\\\\\\= \bf{\dfrac{1}{2}}

А теперь складываем и находим искомую площадь.

S = S_1 + S_2 = \dfrac{2}{3} + \dfrac{1}{2} = \dfrac{4}{6} + \dfrac{3}{6} = \dfrac{7}{6} = \boxed{\bf{1\dfrac{1}{6}}} .

ответ:  1\dfrac{1}{6} .


Найдите площадь фигуры ограниченной графиками функций: , y=2-x, y=0, через интегрирование​
Найдите площадь фигуры ограниченной графиками функций: , y=2-x, y=0, через интегрирование​
4,5(9 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ