Находим отношение ВР/СР;
Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е.
Итак, ВЕ II AC;
Треугольники ЕВК и АКМ подобны по равенству углов , поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; то есть эти треугольники равны
Отсюда ЕВ = АС/2; (ВМ - медиана)
Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2
Итак, СР = ВС*2/3; и, площадь треугольника АСР
Sacp = S*2/3; (S - площадь треугольника АВС).
Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ, то
Sakm = S/4;
Таким образом, площадь четырехугольника КРСМ равна
Skpcm = Sacp - Sakm = S*(2/3 - 1/4) = S*5/12;
ответ 12/5
Находим отношение ВР/СР;
Через вершину В проводится прямая II АС. АР продолжается за точку Р до пересечения с этой прямой в точке Е.
Итак, ВЕ II AC;
Треугольники ЕВК и АКМ подобны по равенству углов , поэтому ЕВ/АМ = ВК/КМ; в даном случае ВК/КМ = 1, и ЕВ = АМ; то есть эти треугольники равны
Отсюда ЕВ = АС/2; (ВМ - медиана)
Треугольники ЕВР и АСР тоже подобны по тому же признаку, поэтому ВР/СР = ЕВ/АС = 1/2
Итак, СР = ВС*2/3; и, площадь треугольника АСР
Sacp = S*2/3; (S - площадь треугольника АВС).
Поскольку площадь треугольника ВАМ равна половине площади АВС, а площадь АКМ равна половине АВМ, то
Sakm = S/4;
Таким образом, площадь четырехугольника КРСМ равна
Skpcm = Sacp - Sakm = S*(2/3 - 1/4) = S*5/12;
ответ 12/5
Пусть х км/ч - скорость одного велосипедиста, который приехал раньше, тогда (х - 3) км/ч - скорость другого велосипедиста. Уравнение:
60/(х-3) - 60/х = 1
60 · х - 60 · (х - 3) = 1 · х · (х - 3)
60х - 60х + 180 = х² - 3х
х² - 3х - 180 = 0
D = b² - 4ac = (-3)² - 4 · 1 · (-180) = 9 + 720 = 729
√D = √729 = ±27
х = (-b±√D)/2a
х₁ = (3-27)/(2·1) = (-24)/2 = -12 (не подходит, так как < 0)
х₂ = (3+27)/(2·1) = 30/2 = 15
ответ: 15 км/ч.