ответ:Биссектриса делит угол, из которого выходит, пополам. От сюда, можно узнать что углы ∠ABD и ∠DBC=80/2=40°
Рассмотрим треугольник ABD, в нем мы знаем два угла: ADB и ABD. Зная два угла в треугольнике можно найти третий угол, т. к. сумма углов в треугольнике равна 180°. Тогда: 180°-(40°+120°)=20°. Т. е. угол ∠DAB = 20°;
Теперь рассмотрим треугольник ABC, в нем мы теперь знаем два угла: ∠A (равен углу ∠DAB ) и угол ∠B, отсюда можно найти третий угол ∠C: 180°-(20°+80°)=80°.
Рассмотри треугольник DBC, в нем нам известны два угла ∠DBC и ∠C, найдем третий угол: 180°-(40°+80°)=60°.
ответ: В треугольнике CBD углы: ∠CBD=40°, ∠C=80°, ∠CDB=60°.
Решение равнобедренного треугольника:
∠L = 120°; SL = LK = 3√2 (ед)
Пошаговое объяснение:
Надо решить равнобедренный треугольник.
Решить треугольник - это значит найти неизвестные стороны и углы.Дано: ΔLKS - равнобедренный;
KS = 3√6 - основание;
∠К = ∠S = 30°;
Найти: ∠L; KL; KS.
1. Найдем ∠L.
Сумма углов треугольника равна 180°.Два угла нам известны : ∠К = ∠S = 30°.
Найдем третий:
∠L = 180° - (∠K + ∠S) = 180° - (30° + 30°) = 120°
2. Найдем боковую сторону SL.
Воспользуемся теоремой синусов:
Стороны треугольника пропорциональны синусам противолежащих углов.⇒
Подставим значения и найдем SL.
Используем основное свойство пропорции:
Произведение крайних равно произведению средних.Значение синусов:
По формуле приведения:
Получим уравнение:
Таким образом, мы решили треугольник:
SL = LK = 3√2 (ед); ∠L = 120°.