29. Прямоугольный параллелепипед имеет размеры 4, 5 и а. Какие значения может принимать а, чтобы объем данного параллелепипеда был меньше, чем объем куба, со стороной 6?
Представим себе несколько точек. Расстояние от первой до второй назовем a₁, расстояние от второй до третьей - a₂ и т.д. Тогда расстояние от первой до третьей равно a₁+a₂; От первой до четвертой равно a₁+a₂+a₃ От первой до 100100 равно a₁+a₂+a₃+...+a₁₀₀₀₉₉; По условию сумма всех этих расстояний равна 2016. То есть: a₁+(a₁+a₂)+(a₁+a₂+a₃)+...+(a₁+a₂+a₃+...+a₁₀₀₀₉₉) = 2016 Раз a₁ присутствует везде, то кол-во a₁ равняется 100099 или 100099a₁ a₂ присутствует во всех скобках, кроме одной, тогда кол-во a₂ равно 100098 или 100098a₂ Перепишем сумму по-другому: 100099a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉=2016 По условию, сумма расстояний от второй точки до всех остальных равна 1918 То есть a₁+a₂+(a₂+a₃)+(a₂+a₃+a₄)+...+(a₂+a₃+a₄+...+a₁₀₀₀₉₉) = 1918 a₂ появляется 100098 раз. Остальные аналогично. Другими словами a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉ = 1918 Найдем разность двух сумм: 2016-1918 = 98 И, если внимательно посмотреть, то 2 суммы отличаются лишь тем, что в одной 100099a₁, а в другой лишь одно a₁, или 100099a₁-a₁ = 98 100098a₁ = 98 a1 = 98/100098 = 49/50049 Не знаю насколько верно(
х-первое число 0,5х-второе число 0.5х-40 - третье число х+0,5х+0,5х-40=1000 2х=1040 х=520 0,5х=260 0,5х-40=260-40=220 1 число: 520 2 число:260 3 число: 220
2. х -на первой полке х-63 - на второй полке 0,5 х- на третьей полке х+х-63+0,5х=237 2.5х=300 х=120 на первой полке 120-63=57 - на второй полке 120/2=60 - на третьей полке
Тогда расстояние от первой до третьей равно a₁+a₂;
От первой до четвертой равно a₁+a₂+a₃
От первой до 100100 равно a₁+a₂+a₃+...+a₁₀₀₀₉₉;
По условию сумма всех этих расстояний равна 2016.
То есть: a₁+(a₁+a₂)+(a₁+a₂+a₃)+...+(a₁+a₂+a₃+...+a₁₀₀₀₉₉) = 2016
Раз a₁ присутствует везде, то кол-во a₁ равняется 100099 или 100099a₁
a₂ присутствует во всех скобках, кроме одной, тогда кол-во a₂ равно 100098 или 100098a₂
Перепишем сумму по-другому: 100099a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉=2016
По условию, сумма расстояний от второй точки до всех остальных равна 1918
То есть a₁+a₂+(a₂+a₃)+(a₂+a₃+a₄)+...+(a₂+a₃+a₄+...+a₁₀₀₀₉₉) = 1918
a₂ появляется 100098 раз. Остальные аналогично.
Другими словами a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉ = 1918
Найдем разность двух сумм: 2016-1918 = 98
И, если внимательно посмотреть, то 2 суммы отличаются лишь тем, что в одной 100099a₁, а в другой лишь одно a₁,
или 100099a₁-a₁ = 98
100098a₁ = 98
a1 = 98/100098 = 49/50049
Не знаю насколько верно(