Пошаговое объяснение:
Заметим:
Отсюда
Но это означает, что
Значит, уравнение равносильно
Если решения данного уравнения существуют, то, по определению дробной части числа, верно неравенство
Но для таких значений переменной верны неравенства
по определению целой части числа равенство
верно. Значит, все натуральные значения
являются корнями данного уравнения.
Пошаговое объяснение:
Так как в данной задаче сумма каждого столбца
должна быть равна 1, ⇒
Матрица приобретает вид:
Найдём собственный вектор х'', отвечающий
собственному значению λ=1.
Для этого решим уравнение: (А-Е)*х''=0''.
Найдём А-Е:
Тогда еравнение (А-Е)*х''=0'' можно записать в виде следующей однородной системы линейных алгебраических
уравнений:
Выполним преобразования.
Умножим первое уравнение на -6, второе уравнение на 3,
а третье уравненик на 12:
Решим эту систему методом Гаусса.
Запишем расширенную матрицу системы:
Разделим вторую строку на 2:
Поменяем местами первую и вторую строки:
Прибавим ко второй строке первую, умноженную на -3:
Прибавим к третьей строке первую, умноженную на -2:
Прибавим к третьей строке вторую, умноженную на 4:
Таким образом:
Разделим третью строку на -30:
Следовательно:
Пусть х₃=с ⇒
ответ: x₁:x₂:x₃=12:10:3.
Пошаговое объяснение:
найдем точки пересечения с ОХ
5x+14-x²=0; умножим на -1 ; x²-5x-14=0 ; x₁₋₂=(5±√(25+56)/2=(5±√81)/2=
=(5±9)/2={-2;7}
найдем отдельно площади для х≤0 х≥0 и сложим
₀ ₀
S₁=-∫(5x+14-x^2)dx=-[(5x²/2)+14x-(x³/3)]=-[(5*4/2)-14*2+8/3]=
⁻² ⁻²
=-[10-28+(8/3)]=18-2 2/3=16-2/3=15 1/3
₇ ₇
S₁=∫(5x+14-x^2)dx=[(5x²/2)+14x-(x³/3)]=
⁰ ⁰
=-[(5*49/2)+14*7-342/3]=122,5+98-114=106,5=106 1/2
S=S₁+S₂=15 1/3+106 1/2=121 5/6 кв. единиц
Пусть
. Заметим, что
, поэтому
. Тем самым уравнение перепишется в виде
.
Теперь подход примерно такой же:
. Если
, то равенство выполняется. Пусть
. Тогда
, значит, равенство выполняться уже не будет. Получаем, что решениями будут натуральные числа
.