После сильного снегопада с дороги собрали гору снега с примесями. Масса этой горы — 360 кг. В ней содержится 15кг песка. Во сколько раз масса чистого снега в горе больше, чем масса песка?
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
А) Чтобы число делилось на 2, надо, чтобы оно было чётным. х и у любые чётные, например 1) (2; 2) 17·2 - 9·2 = 34 - 18 = 16; 2) (6; 2) 17·6 - 9·2 = 102 - 18 =84; б) Чтобы число делилось на 5, надо, чтобы оно оканчивалось на 5 или на 0 1) (0; 5) 17·0 - 9· 5 = - 45; 2)( 5; 5) 17·5 - 9· 5 = 85 - 45 = 40; в) Чтобы число делилось на 10, надо, чтобы оно оканчивалось нулём. ( 17х и 9у должны оканчиваться одинаковыми цифрами) Например 1) (6; 8) 17·6 - 9·8 = 102 - 72 = 30 2) (10; 20) 17·10 - 9·10 = 170 - 90 = 80.
Пошаговое объяснение:
360-15=345кг
345÷15=23 раза