ответ
Из условия задачи следует, что мальчики и девочки должны сидеть "через одного".
Давайте сначала рассадим девочек. Вначале у нас есть два можно рассадить девочек на нечетные места, а можно - на четные.
Теперь рассчитаем, сколькими они могут быть рассажены между друг другом. Это число равно 3! ("три факториал"), то есть на первое место можно посадить любую из троих девочек, на второе - любую из двух оставшихся, на третье - только одну, вместе: 3*2*1).
Для того, чтобы рассадить троих мальчиков, у нас есть также 3!, то есть
Итого:
ВС=корень из( 900-9)= корень из 891=9 корней из 11
sinA=BC:AB
sinA= 9корней из 11: 30=3корня из 11/10