6 кг апельсинов в каждом ящике
Пошаговое объяснение:
По условию, всего в магазин привезли 104 кг фруктов.
Из них:
5 ящиков мандаринов по 6,7 кг в каждом,
3 ящика лимонов по 5,5 кг в каждом
и 9 ящиков апельсинов по ? кг в каждом
1. 6,7 * 5 = 33,5 кг мандаринов привезли
2. 5,5 * 3 = 16,5 кг лимонов привезли
3. 33,5 + 16,5 = 50 кг мандаринов и лимонов привезли
4. 104 - 50 = 54 кг апельсинов привезли
5. 54 : 9 = 6 кг апельсинов в каждом ящике
104
Пошаговое объяснение:
Обозначим два слагаемых а и b.
По условию получаем два уравнения:
{ a + b = n
{ a*b = n + 100
По теореме Виета числа а и b - корни квадратного уравнения
x^2 - nx + n + 100 = 0
D = n^2 - 4(n+100) = n^2 - 4n - 400
x1 = a = (n - √(n^2 - 4n - 400) )/2
x2 = b = (n + √(n^2 - 4n - 400) )/2
Нужно подобрать такие n, чтобы числа x1 и x2 были натуральными, то есть корень должен быть натуральным числом.
Алгебраического решения у меня нет.
Я с программы на Visual Basic проверил все числа до миллиона, и получил единственное решение:
n = 104
√(n^2 - 4n - 400) = 100
a = (n - √(n^2 - 4n - 400) )/2 = (104 - 100)/2 = 2
b = (n + √(n^2 - 4n - 400) )/2 = (104 + 100)/2 = 102
Проверка:
n + 100 = 104 + 100 = 204 = 2*102
2 + 102 = 104
Все верно.
104
Пошаговое объяснение:
Обозначим два слагаемых а и b.
По условию получаем два уравнения:
{ a + b = n
{ a*b = n + 100
По теореме Виета числа а и b - корни квадратного уравнения
x^2 - nx + n + 100 = 0
D = n^2 - 4(n+100) = n^2 - 4n - 400
x1 = a = (n - √(n^2 - 4n - 400) )/2
x2 = b = (n + √(n^2 - 4n - 400) )/2
Нужно подобрать такие n, чтобы числа x1 и x2 были натуральными, то есть корень должен быть натуральным числом.
Алгебраического решения у меня нет.
Я с программы на Visual Basic проверил все числа до миллиона, и получил единственное решение:
n = 104
√(n^2 - 4n - 400) = 100
a = (n - √(n^2 - 4n - 400) )/2 = (104 - 100)/2 = 2
b = (n + √(n^2 - 4n - 400) )/2 = (104 + 100)/2 = 102
Проверка:
n + 100 = 104 + 100 = 204 = 2*102
2 + 102 = 104
Все верно.
5*6,7+3*5,5=50кг
100-50=50кг
50/9=5,55556 кг
Пошаговое объяснение: