Сделаем факторизацию числа 10!, т. е разложим в произведение простых чисел.
Показатель степени, с которым простое число 2 будет входить в разложение 10! равен:
[10/2] + [10/2²] + [10/2³] = 5 + 2 + 1 = 8;
Показатель степени, с которым простое число 3 будет входить в разложение 10! равен:
[10/3] + [10/3²] = 3 + 1 = 4;
Показатель степени, с которым простое число 5 будет входить в разложение 10! равен:
[10/5] = 2
Показатель степени, с которым простое число 7 будет входить в разложение 10! равен:
[10/7] = 1.
Тогда 10! = 2⁸·3⁴·5²·7. Следовательно каноническое разложение любого делителя числа 10! будет содержать не более восьми множителей, равных 2, не более четырех множителей, равных 3, не более двух множителей, равных 5, и не более одного множителя, равного 7.
То есть любой делитель d имеет вид:d = 2ª · 3ᵇ · 5ᶜ · 7ᶠ, где 0 ≤ a ≤ 8, 0 ≤ b ≤ 4, 0 ≤ c ≤ 2, 0 ≤ f ≤ 1. Вот перебирая все возможные значения показателей a, b, c, f, можно получить все делители числа 10!.
Ну, а так как число a может принимать 9 различных значений, число b — 5 значений, c — 3 значения, f — 2 значения, то по правилу произведения (комбинаторика) получаем, что общее количество делителей: 9·5·3·2 = 270.
Раз спрашивается путь, примем его за Х, тогда в первый день пройдено: (2/7)·Х. А осталось: Х-2Х/7=(7Х-2х)/7=5Х/7; Во второй день пройдено: (5Х/7)·3/5= 3Х/7; Значит, на третий день осталось: 5Х/7 -3Х/7=2х/7.И это по условию 22 версты! Т.е.: 2Х/7 = 22, Х=(22·7):2= 77(верст). ответ: 77 верст составляет путь от царского двора до топкого болота! По профилю не понять возраст. Если нужно решить без Х, его можно убрать, приняв весь путь за 1, тогда в первый день пройдено 2/7 пути, осталось: 1-2/7= 5/7, во второй (5/7)·3/5=3/7; осталось 5/7-3/7=2/7.Если 2/7 пути это 22 версты, то весь путь: 22:2·7=77(верст)
Сделаем факторизацию числа 10!, т. е разложим в произведение простых чисел.
Показатель степени, с которым простое число 2 будет входить в разложение 10! равен:
[10/2] + [10/2²] + [10/2³] = 5 + 2 + 1 = 8;
Показатель степени, с которым простое число 3 будет входить в разложение 10! равен:
[10/3] + [10/3²] = 3 + 1 = 4;
Показатель степени, с которым простое число 5 будет входить в разложение 10! равен:
[10/5] = 2
Показатель степени, с которым простое число 7 будет входить в разложение 10! равен:
[10/7] = 1.
Тогда 10! = 2⁸·3⁴·5²·7. Следовательно каноническое разложение любого делителя числа 10! будет содержать не более восьми множителей, равных 2, не более четырех множителей, равных 3, не более двух множителей, равных 5, и не более одного множителя, равного 7.
То есть любой делитель d имеет вид:d = 2ª · 3ᵇ · 5ᶜ · 7ᶠ, где 0 ≤ a ≤ 8, 0 ≤ b ≤ 4, 0 ≤ c ≤ 2, 0 ≤ f ≤ 1. Вот перебирая все возможные значения показателей a, b, c, f, можно получить все делители числа 10!.
Ну, а так как число a может принимать 9 различных значений, число b — 5 значений, c — 3 значения, f — 2 значения, то по правилу произведения (комбинаторика) получаем, что общее количество делителей: 9·5·3·2 = 270.
ответ: 270 делителей.
Пошаговое объяснение: