М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NiKoN044
NiKoN044
18.10.2022 08:28 •  Математика

Записав числа 1, 1/2, 1/3, ... , 1/10 в некотором порядке, соедините их знаками четырёх арифметических действий так, чтобы полученное выражение равнялось 0. (Скобки использовать нельзя.)

👇
Ответ:
SirenaLi27
SirenaLi27
18.10.2022

Пошаговое объяснение:

Можно, например, так:

1:(1/7) - (1/3):(1/9) - (1/2):(1/6) - (1/5):(1/10):(1/4)*(1/8) = 1*7 - (1/3)*9 - (1/2)*6 - (1/5)*10*4*(1/8) = 7 - 3 - 3 - 2*4*(1/8) = 1 - 1 =0

В скобках только числа, а не действия.

4,6(9 оценок)
Открыть все ответы
Ответ:
РоузХз
РоузХз
18.10.2022

Пошаговое объяснение:

) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых. ABCD — параллелограмм, если AB ∥ CD, AD ∥ BC. Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников. Например, это могут быть пары треугольников 1) ABC и CDA, 2) BCD и DAB, 3) AOD и COB, 4) AOB и COD. 2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD. 3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD). Для этого можно доказать равенство одной из тех же пар треугольников. 4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны. Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD. Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB. Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать. Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам

так вроде

4,5(8 оценок)
Ответ:
Vitalihka
Vitalihka
18.10.2022

2 4

Объяснение:

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

AB ∥ CD, AD  ∥ BC.

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

Например, это могут быть пары треугольников

1) ABC и CDA,

2) BCD и DAB,

3) AOD и COB,

4) AOB и COD.

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

4,6(90 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ