М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Бас­кет­боль­ная ко­ман­да дет­ской спор­тив­ной школы встре­ча­лась с ко­ман­да­ми не­сколь­ких школ. Ко­ли­че­ство очков, на­бран­ных иг­ро­ка­ми, тре­нер за­пи­сы­вал в таб­ли­цу. Ис­поль­зуя таб­ли­цу, от­веть­те на во­прос. Номер игры Артём Тимур Вла­ди­мир
Пер­вая игра 2 9 9
Вто­рая игра 6 5 8
Тре­тья игра 8 2 7
Четвёртая игра 4 10 9

Сколь­ко очков на­брал Вла­ди­мир в тре­тьей игре

👇
Ответ:
Fat9l
Fat9l
24.08.2020

будет ровно 34 очков из третья игра

4,8(62 оценок)
Ответ:
diana29102004
diana29102004
24.08.2020

24 очка

Пошаговое объяснение:

9+8+7=24

бу

4,4(95 оценок)
Открыть все ответы
Ответ:
pavelakur
pavelakur
24.08.2020

Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур (исторически, для многоугольников, затем понятие было расширено на квадрируемыеПерейти к разделу «#Квадрируемые фигуры» фигуры) и обладающая свойствами площадиПерейти к разделу «#Свойства»[1]. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру» (например, вырезанным из бумаги квадратом большей площади можно полностью закрыть меньший квадрат), a оценить площадь фигуры можно с наложения на её рисунок сетки из линий, образующих одинаковые квадратики (единицы площади) и подсчитав число квадратиков и их долей, попавших внутрь фигуры (на рисунке справа). В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве (евклидовом или римановом), в частности, на двумерную поверхность в трёхмерном пространствеПерейти к разделу «#Площадь поверхности».

Пошаговое объяснение:

4,4(36 оценок)
Ответ:
aleksminaev
aleksminaev
24.08.2020

основные вопросы, рассматриваемые на лекции:

1. постановка численного дифференцирования

2. численное дифференцирование на основе интерполяционных формул ньютона

3. оценка погрешности дифференцирования с многочлена ньютона

4. численное дифференцирование на основе интерполяционной формулы лагранжа

5. оценка погрешности численного дифференцирования с многочлена лагранжа

постановка численного дифференцирования

функция y = f(x) задана таблицей:

на отрезке [a; b] в узлах  a = x0  < x1  < x2  < : < xn  =b< /x.  требуется найти приближенное значение производной этой функции в некоторой точке  х*    [a; b]. при этом  х*  может быть как узловой точкой, так и расположенной между узлами.

·  численное дифференцирование на основе интерполяционных формул ньютона

считая узлы таблицы равноотстоящими, построим интерполяционный полином ньютона. затем продифференцируем его, полагая, что f '(x)    φ'(x) на [a; b]:

  (1)  формула значительно , если производная ищется в одном из узлов таблицы: х* = xi = x0 + ih:     (2)  подобным путём можно получить и производные функции f (x) более высоких порядков. однако, каждый раз вычисляя значение производной функции f (x) в фиксированной точке х в качестве х0 следует брать ближайшее слева узловое значение аргумента.

·  численное дифференцирование на основе интерполяционной формулы лагранжа

запишем формулу лагранжа для равноотстоящих узлов в более удобном виде для дифференцирования:     затем, дифференцируя по х как функцию от t, получим:     пользуясь этой формулой можно вычислять приближённые значения производной таблично-заданной функции f (x) в одном из равноотстоящих узлов.  аналогично могут быть найдены значения производных функции f(x) более высоких порядков.

4,4(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ