3456,400
264
20,40
28,400
958
9
475,550
6,100
Числа A и B называются взаимно простыми, если НОД(А; В)=1.
Возможны различные варианты :
а) Если числа А и В простые, то НОД(А; В)=1. Например:
НОД(2; 3)=1, НОД(2; 5)=1, НОД(3; 7)=1.
1)
Так как НОД(2; 3)=1, то НОК(2; 3)=2·3=6
2)
НОД(3; 7)=1, то НОК(3; 7)=3·7=21
б) Если числа А и В составные, но не имеют одинаковых простых делителей, тогда НОД(А; В)=1. Например:
НОД(4; 9)=1, НОД(4; 25)=1, НОД(9; 16)=1.
3)
Так как НОД(4; 9)=1, то НОК(4; 9)=4·9=36
2)
НОД(9; 16)=1, то НОК(9; 16)=9·16=144
В общем случае, если А и В взаимно простые, то есть
НОД(А; В)=1, то НОК(А; В)=А·В.
Пошаговое объяснение:
3456,390874 ≈3456,391
264,0987≈264,1
20,4342 ≈20,43
28,40387 ≈28,404
958,05847 ≈958,1
8,999776 ≈9,000
475,55465 ≈475,555
6,0901807≈6,090