751. Из мешка с мукой, масса которого ь кг, отсыпали сначала с муки, затем на 1,2 кг меньше. Сколько килограммов муки осталось в мешке? Составьте выражение по тексту задачи и найдите его значение при b 20 9,4. 11 7 5
Пусть первый член равен x, значит 2-й x/2, а 3-й 2x/3, т.к. по условию их сумма равна 28, то составим и решим уравнение x+x/2+2x/3=28 (6х+3х+4х)/6=28 13х/6=28 х=168/13 х=12 12/13 это 1-й член пропорции найдем 2-й 168/13*1/2=84/13=6 6/13 найдем 3-й 168/13*2/3=112/13=8 8/13
Если тебе не надо записывать решение, то уже и так все понятно: 12 12/13; 6 6/13; 8 8/13...4 4/13
Если надо расписать решение подробно, то смотри продолжение:
пусть последний член пропорции равен x, по свойству пропорции a/b=c/x⇒x=bc/a составим и решим уравнение x=(84/13*112/13)/(168/13) x=(84*112*13)/(13*13*168) x=56/13 x=4 4/13
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.
x+x/2+2x/3=28
(6х+3х+4х)/6=28
13х/6=28
х=168/13
х=12 12/13 это 1-й член пропорции
найдем 2-й
168/13*1/2=84/13=6 6/13
найдем 3-й
168/13*2/3=112/13=8 8/13
Если тебе не надо записывать решение, то уже и так все понятно:
12 12/13; 6 6/13; 8 8/13...4 4/13
Если надо расписать решение подробно, то смотри продолжение:
пусть последний член пропорции равен x, по свойству пропорции a/b=c/x⇒x=bc/a составим и решим уравнение
x=(84/13*112/13)/(168/13)
x=(84*112*13)/(13*13*168)
x=56/13
x=4 4/13
ответ: № 3 (4 4/13)