М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ЯтвойДругг
ЯтвойДругг
12.05.2022 11:47 •  Математика

Поезд вышел в 8 часов утра и прибыл на конечную станцию в одиннадцать часов утра следующих суток. Сколько часов он был в пути?

👇
Ответ:
wertyfaq
wertyfaq
12.05.2022

24-8=16

16+11=27часов

4,4(71 оценок)
Открыть все ответы
Ответ:
cksenia112
cksenia112
12.05.2022

Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: айфон – деньги, вес – круассаны, расстояние – время.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция y=f(x), это значит что каждому допустимому значению переменной x (которую называют «аргументом») соответствует одно значение переменной y (называемой «функцией»).

Что значит «допустимому»?

Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» - не все можно подставить в зависимость.

Например, для функции y=x−−√ отрицательные значения аргумента x – недопустимы.

Ну и вернемся, наконец, к теме данной статьи.

Линейной называется функция вида y=kx+b, где k и b ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной?

Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения D(y) и область значений E(y).

Пошаговое объяснение:

4,4(5 оценок)
Ответ:
ruslan5632
ruslan5632
12.05.2022
Дано уравнение кривой :
y^{2}-16x-6y+25=0
1. Определить тип кривой.
2. Привести уравнение к каноническому виду и построить кривую в исходной системе координат.
3. Найти соответствующие преобразования координат.
Решение.
Приводим квадратичную форму
B = y2
к главным осям, то есть к каноническому виду. Матрица этой квадратичной формы:точки ↓ 
B=\left[\begin{array}{ccc} 0&0\\0&1\\\end{array}\right]
Находим собственные числа и собственные векторы этой матрицы:
(0 - z)x1 + 0y1 = 0
0x1 + (1 - z)y1 = 0
Характеристическое уравнение:
Характеристическое уравнение:
0 - λ ;0   = z^{2}-z=0
0      ;1 - λ= z^{2}-z=0
z^{2}-z=0
D = (-1)2 - 4 • 1 • 0 = 1
x1=1
x2=0
Исходное уравнение определяет параболу (λ2 = 0)
Вид квадратичной формы:
y2
Выделяем полные квадраты:
для y1:
(y12-2•3y1 + 32) -1•32 = (y1-3)2-9
Преобразуем исходное уравнение:
(y1-3)2 = 16x -16
Получили уравнение параболы:
(y - y0)2 = 2p(x - x0)
(y-3)^2=2*8(x-1)
Ветви параболы направлены вправо, вершина расположена в точке (x0, y0), т.е. в точке (1;3)
Параметр p = 8
Координаты фокуса:
F=F( \frac{-P}{2};y0)=F=(\frac{-8}{2};3)
Уравнение директрисы: x = x0 - p/2
x = 1 - 4 = -3
4,5(23 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ