1. Періодичні функції
При введенні тригонометричних функцій аргумент позначався буквою t, оскільки букви х і у використовувались для позначення координат точки Pt . Те-
пер повернемось до звичних позначень: х — незалежна змінна, у — залежна змінна, тобто у = sin х, у = cos х, y = tg x.
Оскільки числам х, х ± 2π на тригонометричному колі відповідає одна й та сама точка Px , то мають місце рівності:
sin(x ± 2π) = sin x, cos(x ± 2π) = cos x .
Цю властивість функцій у = sin х і у = cos х називають періодичністю. Вона полягає у тому, що значення функції повторюються через рівні проміжки зміни аргументу. Точний зміст поняття періодичності функції міститься у наступному означенні.
Функція у = f(х) називається періодичною, якщо існує таке число T ≠ 0, що область визначення функції
разом з кожною точкою х містить точки х ± Т і при цьому виконується рівність f(х ± Т) = f(x). Число Т називається періодом функції.
1)(х+36,1)*5,1=245,82
5,1х+184,11=245,82
5,1х=245,82-184,11
5,1х=61,71
х=61,71/5,1
х=12,1
2)(т-0,67)*0,02=0,0152
0,02т-0,0134=0,0152
0,02т=0,0152+0,0134
0,02т=0,0286
т=0,0286/0,02
т=1,43