2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
Парабола y=x² проходит выше прямой y=2x-3.
Вычтем первого уравнения второе и получим функцию зависимости расстояния по оси у между заданными линиями:
f(x) = x²-2x+3.
Найдём производную этой функции для определения экстремума.
f'(x) = 2x-2.
Приравняем нулю:
2х - 2 = 0.
х = 2/1 = 1.
Найдём знаки производной f'(x) = 2x-2.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точка минимума.
х = 0 1 2
y' = -2 0 2.
Поэтому в точке х=1 имеем минимум функции.
Если по оси у расстояние между линиями минимально, то оно и по оси х будет тоже минимальным.
Находим вертикальное расстояние по разности ординат:
параболы у1 = 1² = 1,
прямой у2 = 2*1-3 = -1.
Δу = 1-(-1) = 2.
Расстояние d по перпендикуляру к прямой равно:
d = Δy*cos α.
Тангенс угла наклона прямой к оси Ох равен 2 (по уравнению у = кх + в, где к это тангенс угла).
cos α = 1/√(1+tg²α) = 1/√(1+4) = 1/√5 = √5/5.
Отсюда получаем ответ:
d = 2*(√5/5) = 2√5/5 ≈ 0,894427.
Аналогичный ответ можно получить, если точку минимального расстояния от параболы до прямой найти с касательной, угловой коэффициент (и значение производной) которой равен 2 (как у заданной прямой).
Получаем 2х = 2, х = 1. Это точка с минимальным расстоянием до прямой 2х - 3.
Далее через точку х = 1 проводим нормаль к прямой и ищем точку пересечения. По разности координат находим длину перпендикуляра - то есть наименьшего расстояния.
ответ:-30;-5;15;
Пошаговое объяснение:
ккаждая риска это 5 едениц