М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

A⁴•(a³)⁹
Подати у вигляді степеня добуток

👇
Ответ:
Никто505
Никто505
12.08.2021

a³¹

Пошаговое объяснение:

4,4(93 оценок)
Открыть все ответы
Ответ:
ArtGame23
ArtGame23
12.08.2021
Решение:

Сначала найдем производную функции:

    \displaystyle \Big ( y \Big )' = \Big ( (x^2-39x+39) \cdot e^{2-x} \Big ) ' = \\\\\\= \Big ( x^2-39x+39 \Big ) ' \cdot e^{2-x} + \Big (e^{2-x} \Big ) ' \cdot (x^2-39x+39) = \\\\\\= \Big ( 2x - 39 \Big ) \cdot e^{2-x} +\Big ( (-1) \cdot e^{2-x} \Big ) \cdot (x^2 - 39x + 39) = \\\\\\= e^{2-x} \cdot \Big ( (2x-39)-(x^2-39x+39) \Big ) = \\\\\\= e^{2-x} \cdot (-x^2 + 41x - 78)

Также заметим, что функция, как и производная, определена для всех значений x (иначе говоря, x \in \mathbb R). Теперь, чтобы найти критические точки производной, приравняем ее к нолю:

    e^{2-x} \cdot (-x^2 + 41x - 78) = 0

Сразу же заметим, что e^{2-x} 0, поэтому обе части можно разделить на данное выражение:

    -x^2 + 41x - 78 = 0 \;\;\; \Big | \cdot (-1) \\\\x^2 - 41x + 78 = 0

Дальше воспользуемся теоремой Виета:

    \displaystyle \left \{ {{x_1+x_2=41} \atop {x_1 \cdot x_2=78}} \right. ; \;\;\; \Rightarrow \;\;\; \left \{ {{x_1=2} \atop {x_2=39}} \right.

Полученные две точки выставим на координатной прямой, а потом на получившихся трех промежутках расставим знаки производной:

          - - -                 + + +                    - - -

    ________\Big ( \; 2 \; \Big )________\Big ( \; 39 \; \Big )________\rightarrow x

Можно сделать вывод, что x=2 - точка минимума функции (в силу того, что знак меняется с «-» на «+»), а x=39 - точка максимума (так как происходит смена знака с «+» на «-»).

Дальше остается заметить, что единственная точка минимума функции (как мы ранее получили, x=2) располагается на заданном в условии отрезке \Big [ 0; 6 \Big ].

Эта точка также будет соответствовать ответу, так как на промежутке [0;2] функция убывает, а на промежутке [2;6] - возрастает:

                  ↘                    ↗

     \Big ( \; 0 \; \Big )_______\Big ( \; 2 \; \Big )_______\Big ( \; 6 \; \Big )

Точку, соответствующую ответу, мы нашли. Осталось только определить значение функции в этой точке:

    y(2) = (2^2-39 \cdot 2+39) \cdot e^{2-2} = (4 - 39) \cdot 1 = \underbrace { \; -35 \; } _{\text{min} \;y}

Задача решена!

ответ: - 35 .
Найдите наименьшее значение функции y=(x^2-39x+39)*e^(2-x) на отрезке [ 0; 6]. зарание .
4,8(85 оценок)
Ответ:
kopechenkina
kopechenkina
12.08.2021
1)корень из x : подкоренное выражение неотрицательно. т.е. x>= 0 или 0<=x<+бесконечность
2)5/ корень из x: знаменатель не может равняться 0, поэтому x строго больше 0, т. е.,  x> 0 или 0<x<+бесконечность
3) 1./ модуль(x-2): знаменатель не может равняться 0, поэтому x-2 не равно 0, т. е. , x не равно 2 и область будет (- бесконечность;2) объединение (2;+бесконечность)
4. я понял это выражение так: из дроби 1, деленная на модуль x, вычесть 2
 Аналогично, x неравен  0:  (- бесконечность;0) объединение (0;+бесконечность)   
4,8(45 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ