Для начала построим на координатной плоскости треугольник АВС по указанным координатам. Смотри скан. Точка А1 должна быть симметричной точке А относительно прямой СВ. Поскольку СВ параллельна оси х, то точка симметрии А1 будет находиться на прямой, перпендикулярной оси у. и проходящей через точку А⇒А1будет иметь координаты(1;0). смотри скан. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен. потому что треугольник АВС прямоугольный и ранобедренный, и фигура АВСА1-квадрат. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен относительно прямой а, смотри скан. Уравнение для прямой а может быть представлено формулой у=-х+3
Для начала построим на координатной плоскости треугольник АВС по указанным координатам. Смотри скан. Точка А1 должна быть симметричной точке А относительно прямой СВ. Поскольку СВ параллельна оси х, то точка симметрии А1 будет находиться на прямой, перпендикулярной оси у. и проходящей через точку А⇒А1будет иметь координаты(1;0). смотри скан. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен. потому что треугольник АВС прямоугольный и ранобедренный, и фигура АВСА1-квадрат. Параллельный перенос т.А в т.С одновременно с переносом т.В в т.А1 возможен относительно прямой а, смотри скан. Уравнение для прямой а может быть представлено формулой у=-х+3
( x^4 - 4x^2 + 3 ) / ( x - 1 ) = 0
X не равен 1
Х^4 - 4х^2 + 3 = 0
Х^2 = а ; а > 0
а^2 - 4а + 3 = 0
D = 16 - 12 = 4 = 2^2
a1 = ( 4 + 2 ) : 2 = 3
a2 = ( 4 - 2 ) : 2 = 1
X^2 = a
X1,2 = ( +\- ) квадратный корень 3
Х3 = 1 ( не подходит )
Х4 = - 1
ответ V 3 ; - V 3 ; - 1