629/100; 6,29; 6 29/100
История возникновения чисел очень глубокая и давняя. Сама жизнь привела людей к тому, что стало просто необходимо использовать символы для написания чисел.
Представьте, ведь давным-давно во времена, когда у людей не было цифр и они не умели считать как мы сейчас, у них все-равно возникало огромное количество поводов для счета. Правда, в те времена им не нужно было применять огромные числа. И самый простой вариант счета подсказала природа. Люди использовали пальцы рук, а при больших числах и ног, чтобы посчитать, например, количество голов скота в стаде. Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах. Достаточно неудобно было, а вдруг никого рядом не окажется когда нужно посчитать большое количество чего-нибудь?
История чисел
Потом кто-то придумал делать глиняные кружочки для подсчета. Например, повел пастух с утра большое стадо на пастбище. Подсчитал всех животных с кружков — сколько кружков, столько животных. Вечером привел их домой, опять смотрит, чтобы каждому животному соответствовал один кружок. Ну и подобных вариантов существовало множество, то есть пользовались подручными средствами.
Первое доказательство использования древними людьми счета — это волчья кость, на которой 30 тысяч лет назад сделали зарубки. Притом они набиты не как-нибудь, а сгруппированы по пять.
Древность.
В Древности у разных народов существовали свои счета. Например, майа использовали только три обозначения: точку, линию и эллипс и записывали ими любые цифры.
В Древнем Египте около 5000-4000 лет до н.э. использовали такую запись чисел: единица обозначалась палочкой, сотня — пальмовым листом, а сто тысяч — лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч — очень много, как лягушек в Ниле).lyagushka
А вот наши предки-славяне использовали самую сложную запись чисел. Они их записывали буквами, над которыми ставили специальный значок «титло», чтобы отличить, где написали буквы, а где цифры, и значков у них было аж 27.
А, например, папуасские племена имели только две цифры, один и два, и называли их «урапун» и «окоза» соответственно. А дальнейшие числа называли просто используя эти два. Например три у них — «окоза-урапун», а четыре — «окоза-окоза». Видимо, считать им особо нечего, поэтому больших чисел у них нет. А все, что больше шести-семи они называют «много». А сколько там «много» уже неизвестно!
Read more: http://lubopitnie.ru/istoriya-chisel/#ixzz6aANyicNw
ответ: 2*sqrt(5). Пояснение: Выразим косинус угла между прямыми BA1 и BA2, при теоремы косинусов.Обозначим BA1=a , BA2=b , α=угол между BA1 и BA2 ,
тогда cos(α)=(a^2+b^2-64)/(2*a*b). После этого нужно выразить а и b через x. Для этого тоже воспользуемся теоремой косинусов (рассматривая треугольники BHA1 и BHA2 соответственно). Получим a^2=x^2-2*x+4 , b^2= x^2-10*x+100 . Эти значения подставим в выражение для косинуса альфы. Теперь подумаем, когда угол между прямыми максимальный? ответ: когда косинус принимает минимальное значение.
Теперь у нас есть выражение для cos(α) зависящее только от x ,и для получения ответа, нам нужно найти минимум этого выражения, то есть такой х , что выражение cos(α) минимально.
Подробнее - на -
Відповідь: 6.8
Пошаговое объяснение:
Відповідь
6.8