Пошаговое объяснение:
Чтобы решить систему уравнений, надо одну из переменных выразить через другую и подставить полученное выражение во второе уравнение:
2 – 3 * х = 2 * (1 - у);
2 – 3 * х = 2 – 2 * у;
-3 * х = - 2 * у;
у = - 3 * х / -2 = 3 * х / 2.
Подставим во второе уравнение полученное выражение:
4 * (х + у) = х – 1,5;
4 * (х + (3 * х / 2)) – х + 1,5 = 0;
4 * х + 6 * х – х + 1,5 = 0;
9 * х + 1,5 = 0;
9 * х = - 1,5;
х = - 1,5 / 9 = - 15 / 90 = - 1/6.
у = 3 * х / 2 = 3 * (- 1/6) / 2 = - (1/2) / 2 = - 1/4 = - 0,25.
ответ: решением системы уравнений является пара чисел: х = -1/6; у = -0,25.
1. Производительность труда бригады - часть всего объема работ, выполняемая бригадой за один день.
2. Обозначим весь объем работ через P.
3. Тогда производительность труда первой бригады Q1 = P / 24.
4. Производительность труда второй бригады Q2 = P / 16.
5. Вторая бригада, работая четыре дня, выполнит часть P1 от всего объема работ, равную:
P1 = 4 * P / 16 = P / 4.
6. Тогда первой бригаде останется объем работ P2, равный: P2 = P - P1 = P - P / 4 = 3 * P / 4.
7. Время T, которое потребуется первой бригаде на выполнение этого объема работ, равно:
T = P2 / Q1 = (3 * P / 4) / (P / 24) = 3 * 24 / 4 = 18.
ответ: первая бригада закончит работу за 18 дней.
На фото