М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sora1ppppoyn1vx
sora1ppppoyn1vx
05.08.2022 23:57 •  Математика

171. Розташуйте числа 2,7; 4; -7,2; 0,9; -2,3 у порядку спа- дання їхніх модулів. Порівняння чисел 172. Порівняйте числа: 1)-258 i 254; 2) -7,1 i -7,3; 3) 4,2 i 0; 4) 01-2,1; 5) -0,4 i-0,3; 6) -2,11 1 -23.

👇
Открыть все ответы
Ответ:
Natasha1146
Natasha1146
05.08.2022
     Функция, получающая бесконечно малые приращения прибесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной призначении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0, значенияфункции f (x) отличаются сколь угодно мало от её значения f (x0). Точнее, функция f (х) называетсянепрерывной при значении аргумента x0 (или, как говорят, в точке x0), если каково бы ни было ε > 0, можноуказать такое δ > 0, что при |х — х0| < δ будет выполняться неравенство |f (x) — f (x0)| < ε. Это определениеравносильно следующему: функция f (x) непрерывна в точке x0, если при х, стремящемся к x0, значениефункции f (x) стремится к пределу f (x0). Если все условия, указанные в определении Н. ф., выполняютсятолько при х ≥ х0 или только при х ≤ х0, то функция называется, соответственно, непрерывной справа илислева в точке x0. Функция f (x) называется непрерывной н а отрезке [а, b], если она непрерывна в каждойточке х при а < х < b и, кроме того, в точке а непрерывна справа, а в точке b — слева.         Понятию Н. ф. противопоставляется понятие разрывной функции (См. Разрывные функции). Одна и таже функция может быть непрерывной для одних и разрывной для других значений аргумента. Так, дробнаячасть числа х [её принято обозначать через (х)], например         
4,6(42 оценок)
Ответ:
vgirenkov
vgirenkov
05.08.2022

2f(x), а, значит, и функция f(x).

Пошаговое объяснение:

Мы воспользуемся следующими свойствами непрерывных функций:

(1) сумма и разность непрерывных функций — непрерывные функции;

(2) если g(x) — непрерывная функция, функция g(ax) также непрерывна.

Теперь заметим, что по условию непрерывны функции f(x) + f(2x) и f(x) + f(4x), а в силу свойства (2) вместе с функцией f(x) + f(2x) непрерывна и функция f(2x) + f(4x).

Далее, по свойству (1) непрерывна функция (f(x) + f(2x)) + (f(x) + f(4x)) – (f(2x) + f(4x)) = 2f(x), а, значит, и функция f(x).

4,6(85 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ