1) x³-3x²+x+1≥0; при х=1 1³-3·1²+1+1=0. значит x³-3x²+x+1 раскладывается на множители и и один из множителей (х-1) Делим "углом" _x³-3x²+x+1 | x-1 x³-x²
_-2x²+x+1 -2x²+2x
_-x+1 -x+1
0 (х-1)(х²-2х-1)≥0 Решаем методом интервалов x²-2x-1=0 D=(-2)²-4·1·(-1)=8 x=(2-2√2)/2=1-√2 или х=(2+2√2)/2=1+√2
__-___[1-√2]___+[1]__-__[1+√2]__+__
О т в е т. [1-√2;1]U[1+√2;+∞).
2) (9x²-12x+4)⁵ (4-3x-x²)/(x²+2x-8)(x+3)¹¹≥0; Раскладываем на множители: ((3х-2)²)⁵(-х+1)(х+4)/(х+4)(х-2)(х+3)¹¹≥0; (3х-2)¹⁰(-х+1)/(х-2)(х+3)¹¹≥0; х≠-4 Решаем методом интервалов:
7000мм=7м
100см=1м
80дм=0,8 м
3км=3000м
6км=6000м
350м=350м