Для начала поработаем со вторым выражением. Первые три слагаемых свернем в квадрат разности: ; В следующих двух слагаемых вынесем общий множитель "40":
; В итоге получим следующее уравнение:
. В скобках мы видим похожие выражения, отличающиеся лишь знаком посередине (такие выражение называются сопряженными). А хотелось бы видеть там равные (строго говоря тождественные) выражения. Пусть в первой скобке вместо
будет стоять
; Это приведет к тому, что придется убавить
; В итоге:
; Слева стоит квадрат суммы. Уравнение примет вид:
; Сворачивая еще раз:
; Получаем серию прямых:
; А теперь приступим к рассмотрению первого уравнения.
Это уравнение задает круг с центром в точке (0, 0) и радиусом ; Рассмотрим прямую
; Найдем радиус окружности с центром в начале координат, которая касается данной прямой. Это легко сделать из подобия треугольников.
; Значит, круг касается всех этих четырех прямых. Достаточно найти только координаты касания с любой из прямых. Это делается так же, как и находился радиус окружности. Для той же прямой это координаты
; Ну а все решения:
Пошаговое объяснение:
Пусть скорость первого велосипедиста равна- х км/я тогда скорость второго - (х+2)км/ч. время затраченное на дорогу первым велосипедистом, равно - 54/х ч,а вторым - 54/х+2 ч. второй велосипедист затратил на 18 мин, т.е на 3/10 ч.больше времени.
Составим уравнение:
54/х- 54/х+2= 3/10
3х^2+6x-1080 =0
Сократим на 3 и получим
х^2+2x- 360 =0
D= b^2-4ac= 2^-4*(-360)= 4+ 1440= 1444
х1= (b+√D)/2а= (2+38)/2= 20 км/ч скорость первого велосипедиста
х2=(b-√D)/2а= (2-38)/2= -18 не удовлетворяет условию т.к <0
х+2= 20 +2 = 22 км/ч скорость второго велосипедиста
3/8=5/10
за 2 часа она то за 3 час она
1)5/10+1/10=6/10
2)10/10-6/10=4/10