Имеется шесть натуральных чисел. выписали наименьшие общие кратные всех возможных пар. может ли оказаться, что выписаны различные числа, не превосходящие 30?
Начнем с того, что наименьшее общее кратное будет больше у наибольших взаимно простых чисел. Пусть последовательность 1,2,3,4,5,6 Числа 5 и 6 - взаимно простые и НОК(5,6)=30, что удовлетворяет условию! Остальные числа от 1 до 4 имеют наименьшее общее кратное меньше 30, это можно легко заметить по разложению чисел 1 2- простое 3- простое 4=2*2 3- простое 5- простое 6=2*3
ответ: да такая последовательность существует и равна 1,2,3,4,5,6
Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
Пусть последовательность 1,2,3,4,5,6
Числа 5 и 6 - взаимно простые и НОК(5,6)=30, что удовлетворяет условию!
Остальные числа от 1 до 4 имеют наименьшее общее кратное меньше 30, это можно легко заметить по разложению чисел
1
2- простое
3- простое
4=2*2
3- простое
5- простое
6=2*3
ответ: да такая последовательность существует и равна 1,2,3,4,5,6