М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
фуад05
фуад05
07.04.2020 21:26 •  Математика

Карандаш и тетрадь стоят 7 рублей, а 5 таких же карандашей и 2 такие же тетради - 23 рубля. какова цена карандаша и тетради?

👇
Ответ:
Tavvi
Tavvi
07.04.2020
Пусть Х (руб) - стоит один карандаш, а одна тетрадь Y рублей.
Составим систему уравнений
X + Y = 7
5X + 2Y = 23
Y = 7 - X 
5X + 2 * ( 7 - X ) = 23
5X + 14 - 2X = 23
3X = 9
X = 3
Y = 7 - 3 = 4 
карандаш 3 рубля, тетрадь 4 рубля
Карандаш + Тетрадь = 3 + 4 = 7 рублей 
4,7(97 оценок)
Открыть все ответы
Ответ:
zalinairina9
zalinairina9
07.04.2020

Пусть сторона нижнего основания а, верхнего -в.

По заданию в  = (2/3)а.

Проведём диагональное сечение.

В сечении - равнобокая трапеция высотой 3 и углом при нижнем основании 60 градусов.

Верхнее основание равно в√2 = (2/3)а√2.

Нижнее основание равно равно а√2.

Так как угол 60 градусов, то разница а√2 - (2/3)а√2 = (1/3)а√2 равна боковой стороне.

Боковая сторона равна 3/sin 60° = 3/(√3/2) = 6/√3 = 2√3.

Приравняем (1/3)а√2 = 2√3, отсюда а = 6√(3/2).

Сторона в = (2/3)а = (2/3)*6√(2/3) = 4√(3/2).

Проекция бокового ребра на нижнее основание равна

3/tg60° = 3/√3 = √3.

Спроецируем этот отрезок на сторону нижнего основания.

√3*cos45° = √3*(1/√2) = √(3/2).

Отсюда находим наклонную высоту боковой грани.

hн = √((2√3)² - (√(3/2)²) = √(12 - (3/2)) = √(21/2).

Находим площадь боковой поверхности пирамиды.

Периметры:

- верхнего основания Р1 = 4*4√(3/2) = 16√(3/2),

- нижнего основания Р2 = 4*6√(3/2) = 24√(3/2).

Тогда Sбок = (1/2)(Р1 + Р2)*hн = 20√(3/2)*√(21/2) = 30√7.

S1 = (4√(3/2))² = 24,

S1 = (6√(3/2))² = 54.

ответ: S = S1  + S2 + Sбок = 24 + 54 + 30√7 = 78 + 30√7.

4,4(20 оценок)
Ответ:
кики50
кики50
07.04.2020

Пусть сторона нижнего основания а, верхнего -в.

По заданию в  = (2/3)а.

Проведём диагональное сечение.

В сечении - равнобокая трапеция высотой 3 и углом при нижнем основании 60 градусов.

Верхнее основание равно в√2 = (2/3)а√2.

Нижнее основание равно равно а√2.

Так как угол 60 градусов, то разница а√2 - (2/3)а√2 = (1/3)а√2 равна боковой стороне.

Боковая сторона равна 3/sin 60° = 3/(√3/2) = 6/√3 = 2√3.

Приравняем (1/3)а√2 = 2√3, отсюда а = 6√(3/2).

Сторона в = (2/3)а = (2/3)*6√(2/3) = 4√(3/2).

Проекция бокового ребра на нижнее основание равна

3/tg60° = 3/√3 = √3.

Спроецируем этот отрезок на сторону нижнего основания.

√3*cos45° = √3*(1/√2) = √(3/2).

Отсюда находим наклонную высоту боковой грани.

hн = √((2√3)² - (√(3/2)²) = √(12 - (3/2)) = √(21/2).

Находим площадь боковой поверхности пирамиды.

Периметры:

- верхнего основания Р1 = 4*4√(3/2) = 16√(3/2),

- нижнего основания Р2 = 4*6√(3/2) = 24√(3/2).

Тогда Sбок = (1/2)(Р1 + Р2)*hн = 20√(3/2)*√(21/2) = 30√7.

S1 = (4√(3/2))² = 24,

S1 = (6√(3/2))² = 54.

ответ: S = S1  + S2 + Sбок = 24 + 54 + 30√7 = 78 + 30√7.

4,4(94 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ