1) 58:2=29
2)29x5=145
Пошаговое объяснение:
Теорема Безу
Остаток от деления многочлена f(x) на двучлен (x - a) равен f(a)
Доказательство
f(x) = (x - a)·g(x) + r, где g(x) - частное, имеет степень на 1 меньше, чем f(x), а r - число (многочлен степени 0)
Тогда, подставляя x = a получаем:
f(a) = (a - a)·g(a) + r, то есть получаем f(a) = r, или r = f(a) - что и требовалось.
Теорема 2
x = a - корень f(x) ⇔ f(x) делится на (x - a)
Доказательство
из теоремы Безу получаем, что если f(a) = 0 (то есть a - корень f(x)) ⇒ f(x) = (x - a)·g(x) + 0 ⇒ f(x) при делении на (x - a) дает g(x) при 0-м остатке, а значит делится (x - a)
Обратно: раз f(x) делится на (x - a), значит остаток равен 0, а он по теореме Безу равен f(a), то есть a - корень f(x)
обозначаем: x-количество мужчину-количество женщинz-количество детейсоставляем уравнения: x+y+z=20 - всего пошло в поход20x+5y+3z=149 - это они неслиотталкиваясь от того что 1 ребенок несет 3 кг, получаем, что детей было либо 3, либо 13 (23 и более рассматривать нет смысла, ибо противоречит условию) - лишь в этих случаях получаем на конце числа килограммов цифру 9итак, у нас 2 случая: z=3 и z=13получаем совокупность двух систем: (система1)x+y+z=2020x+5y+3z=149z=3(система2)x+y+z=2020x+5y+3z=149z=3решения для этих систем будут такими : (система1)x=4y=13z=3(система2)x=5y=2z=13ответ: либо (4 мужчины, 13 женщин, 3 ребенка),
либо (5 мужчин, 2 женщины, 13 детей)
58:2*5=145
должен изготовить по плану