Перепишем уравнения в цилиндрической системе координат: (x, y, z) меняются на (r, φ, z) по формулам x = r cos(φ - arctg 3/4), y = r sin(φ - arctg 3/4) – арктангенс возник из соображений удобства, чтобы третье уравнение выглядело поприличнее. Откуда отсчитывать углы, для нас не принципиально.
Первое уравнение:
Второе уравнение не меняется.
Третье уравнение:
Итак, уравнения поверхностей, ограничивающих тело, выписаны выше: r = 2, z = 1, z = 12 - 5r sin φ. Тело, которое они ограничивают, изображено на приложенном рисунке: это часть цилиндра, вырезанная двумя плоскостями.
Сформулируем условия в виде неравенств. 1 ≤ z ≤ 12 - 5r sin φ 0 ≤ φ ≤ 2π 0 ≤ r ≤ 2
Осталось вспомнить, что элемент объёма в цилиндрических координатах есть dV = r dr dφ dz, и вычислить интеграл:
ответ: 44π.
________________________________________
Для самопроверки получим этот ответ без интеграла. Самая нижняя точка, в которой наклонная плоскость пересекает цилиндр, это z = 12 - 5 * 2 = 2, самая высокая – z = 12 + 5 * 2 = 22. Тогда объём равен сумме объёма цилиндра с высотой 2 - 1 = 1 и половины объёма цилиндра с высотой 22 - 2 = 20. V = S * (h1 + h2 / 2) = 4π * (1 + 10) = 44π
Пусть третье число равно x. тогда 1 и 2 число равны x-10 и x-10 соотв. получаем 1 = x - 10; 2 = x-10; 3 = x; по условию сумма трех чисел равна 310. составим уравнение опираясь на выкладки, приведенные выше: (x-10) + (x-10) +x = 310; решаем данное уравнение: 3x-20=310; 3x=310+20; 3x=330; x=330/3; x=110; за x мы принимали третье число, следовательно третье число равно 110. найдем 1 и 2 числа. 1 число = x - 10 = 110 - 10 = 100; первое число равно второму по условию, следовательно 2 число равно 100. таким образом первое число = 100, второе = 100, третье = 110. сделаем проверку: 100+100+110=310 - верно. удачи.
__/\_/