М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Arisha2544
Arisha2544
06.08.2020 06:31 •  Математика

Решить уравнение: (x-4)*(x-3)*(x-2)*(x-1)=24

👇
Ответ:
(x - 1)(x - 2)(x - 3)(x - 4) = 24
Перемножаем первую и четвёртую скобки; вторую и третью.
(x^2 - 5x + 4)(x^2 - 5x + 6) = 24
Замена переменной: x^2 - 5x + 5 = t
(t - 1)(t + 1)=24
t^2 = 25
t = +- 5
1) t = 5
x^2 - 5x + 5 = 5
x^2 - 5x = 0
x(x - 5) = 0
x = 0   или  x = 5
2) t = -5
x^2 - 5x + 5 = -5
x^2 - 5x + 10 =0
D = 25 - 4 * 10 < 0, корней нет.

ответ. x = 0  или  x = 5.
4,7(46 оценок)
Открыть все ответы
Ответ:
Anna124212
Anna124212
06.08.2020

Вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз" в 14,3 раза.

Объяснение:

Определить, во сколько раз вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз".

1) Введем обозначения по условию:

Число бросков n = 16:

1-е событие "монета выпала решкой ровно 10 раз"  k = 10;

2-е событие "монета выпала решкой ровно 13 раз" k = 13.

Найти отношение вероятности первого события ко второму:

\displaystyle \frac {P(10)}{P(13)}.

Вероятностью наступления некоторого события называется отношение числа благоприятных исходов к числу всех возможных исходов.

2) При бросании монеты число всех исходов равно 2ⁿ.

В нашем случае число всех возможных исходов одной или другой стороны монеты при 16 бросках равно 2¹⁶.

Число сочетаний без повторений из n элементов по k - это количество , которыми можно выбрать k элементов из n без учета порядка.

\displaystyle C^{k} _{n} = \frac{n!}{k! (n-k)!}

3) Число благоприятных исходов в первом случае.

Число бросков n = 16

Число выпадений решки k = 10.

Число благоприятных исходов в первом случае равно числу сочетаний  из 16 по 10.

\displaystyle C^{k} _{n} = \frac{16!}{10! (16-10)!}= \frac{16!}{10! \cdot 6!}.

4) Вероятность события "монета выпала решкой ровно 10 раз".

\displaystyle P(10) = \frac{C^{10}_{16}}{2^{16}} = \frac{16!}{10! \cdot 6! \cdot 2^{16} } .

5) Число благоприятных исходов во втором случае.

Число бросков n = 16

Число выпадений решки k = 13.

Число благоприятных исходов во втором случае равно числу сочетаний  из 16 по 13.

\displaystyle C^{k} _{n} = \frac{16!}{13! (16-13)!}= \frac{16!}{13! \cdot 3!}.

6) Вероятность события "монета выпала решкой ровно 13 раз"

\displaystyle P(13) = \frac{C^{13}_{16}}{2^{16}} = \frac{16!}{13! \cdot 3! \cdot 2^{16} } .

7) Найдем,  во сколько раз вероятность первого события больше вероятности второго события.

\displaystyle \frac{P(10)}{P(13)} =\frac{C^{10}_{16}}{2^{n}} : \frac{C^{13}_{16}}{2^{n}} =\frac{C^{10}_{16}}{2^{n}} \cdot \frac{2^{n}}{C^{13}_{16}} =\frac{C^{10}_{16}}{C^{13}_{16}} .

\displaystyle \frac{P(10)}{P(13)} =\frac{16! \cdot 13! \cdot 3!}{10! \cdot 6! \cdot 16!} =\frac{10! \cdot 11 \cdot 12 \cdot 13 \cdot 3!}{10! \cdot 3! \cdot 4 \cdot 5 \cdot 6} =\\\\\\=\frac{11 \cdot 13}{10} = \frac{143}{10} =14,3

Вероятность события "монета выпала решкой ровно 10 раз" больше вероятности события "монета выпала решкой ровно 13 раз" в 14,3 раза.

4,8(100 оценок)
Ответ:
Алена0607
Алена0607
06.08.2020
Пусть угол BAL равен альфа , угол ACB равен бета . Сумма углов в треугольнике ABC равна 180°, откуда 2 альфа плюс 31 градусов плюс бета =180 градусов. Аналогично, из треугольника ALC альфа плюс 58 градусов плюс бета =180 градусов. Получаем систему уравнений:
система выражений новая строка 2 альфа плюс 31 градусов плюс бета =180 градусов, новая строка альфа плюс 58 градусов плюс бета =180 градусов конец системы равносильно система выражений новая строка 2(122 градусов минус бета ) плюс бета =149 градусов, новая строка альфа =122 градусов минус бета конец системы равносильно система выражений новая строка бета =95 градусов, новая строка альфа =27 градусов. конец системы
Таким образом, угол ACB равен 95°.

Ответ: 95.
4,4(50 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ