Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура — это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура — это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
Пошаговое объяснение:
ответ:12
Пошаговое объяснение:
Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Заштрихованная фигура - это половина круга, и ее площадь равна S/2=8{pi}
В ответе записываем S/{pi}.
ответ: 8
2. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 3.
Тогда площадь круга равна {pi}r^2=3^2{pi}=9{pi}
Найдем, какую часть заштрихованная фигура составляет от круга.
Мы видим, что заштрихованная фигура - это половина круга и еще одна четверть от половины, то есть одна восьмая.
1/2+1/8=5/8
Таким образом, площадь заштрихованной фигуры составляет 5/8 от площади круга.
S={5/8}*9{pi}=5,625{pi}
В ответе записываем S/{pi}.
ответ: 5,625
3. Найдите (в см2) площадь S закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки 1 см \times 1 см (см. рис.). В ответе запишите S/{pi}.
Сначала найдем радиус круга. Считаем клеточки, и получаем, что радиус равен 4.
Тогда площадь круга равна {pi}r^2=4^2{pi}=16{pi}
Найдем, какую часть круга составляет незакрашенный сектор. Если мы незакрашенный центральный угол повернем на угол alpha, то увидим, что его величина равна 90^{circ}:
Сектор 90^{circ} - это 1/4 часть круга. Следовательно, закрашенный сектор - это 3/4 круга. И его площадь равна S={3/4}*16{pi}=12{pi}
В ответе записываем S/{pi}.
ответ: 12
х= 29⁷/₁₀₂ - 26¹²/₁₀₂
х=2 ¹⁰⁹/₁₀₂ - ¹²/₁₀₂
х=2 ⁹⁷/¹⁰²
20 1/19-(х-4 17/19)=7 18/19
х-4 17/19= 20 1/19- 7 18/19
х-4 17/19=12 20/19-18/19
х-4 17/19=12 2/19
х=12 2/19+4 17/19
х=16 19/19
х=17