Правильная четырехугольная пирамида — это многогранник, у которого основание пирамиды — квадрат, а боковые грани — равные равнобедренные треугольники. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.
Пусть данная пирамида МАВСD. МО - высота, МН - высота боковой грани ( апофема). Высота МН равнобедренного ∆ ВМА - его медиана. ВН=АН.
МО перпендикулярна плоскости основания и потому перпендикулярна любой прямой, лежащей в этой плоскости и проходящей через О.
∆ МОН - прямоугольный. Это "египетский" треугольник с отношением катета и гипотенузы 4:5, следовательно, ОН=9 ( то же получим и по т.Пифагора).
ОН по т. о 3-х перпендикулярах перпендикулярна АВ, следовательно, треугольник ВОН - прямоугольный равнобедренный ВН=ОН. ВО=ОН√2=9√2.
По т.Пифагора ВМ=√(МО²+BО²)=√(144+162)=√306=3√34
4/13х+19-прочитал в первый день
х-(4/13х+19)-осталось после первого дня
2/7(х-4/13х-19)+16-прочитал во второй день
4/13х+19+2/7(х-4/13х-19)+16+54=х
4/13х+2/7х-8/91х-38/7=х-89
28х+26х-8х-494=х-89
46х-494=х-89
45х=405
х=9
-