Айнымалы ток генераторы Ауданы 360 см2 рама магнит өрісінде 25 Гц жиілікпен айналады. Егер айналу жиілігі 75 Гц-ке артса, рамадағы индукциялық ЭҚК амплитудасы қалай өзгереді? 4 есе артады 3 есе артады 4 есе кемиді 3 есе кемиді
Нам нужно доказать, что плоскость АВС параллельна плоскости А1В1С1
А1В1 — средняя линия треугольника АОВ, по определению. она соединяет середины сторон. по свойству сред линии треугольника она параллельна стороне АВ. Аналогично в треугольнике ВОС В1С1 — средняя линия параллельна стороне ВС.
Две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, значит плоскости параллельны. (в данном примере рассматриваем отрезки как части прямых)
Задача 4 К окружности с центром в точке О проведены из точки В касательные АВ и ВС (А и С - точки касания), Окружность пересекает отрезок ОВ в точке Т. ∠АВТ=30°. Доказать, что Т - точка пересечения биссектрис ∆ АВС. ---------------------------------------------------- Нарисуем окружность и касательные ВА и ВС. Соединим А и С с центром окружности и с точкой В. АВ=ВС как отрезки касательных из одной точки, АО=ОС - радиусы, ОВ - общая сторона. ∠ОВС=∠АВО=30°. Точка Т лежит на ВО ВО - гипотенуза треугольника, в котором катет, противолежащий углу 30°, равен R. ОТ - радиус => ВТ=ОТ. Проведем АК и СР через точку Т до пересечения с АВ и АС. Треугольники АОТ и ТОС образованы радиусами, они равнобедренные и равносторонние, так как центральные углы в них являются и углами прямоугольных треугольников, в которых один из острых углов ( при В) равен 30°. Следовательно, центральные углы АОТ и ТОС равны 60°. АС диагональ ромба и является биссектрисой углов ромба АОСТ.=> ∠ ТАС=∠ТСА=30° и отсюда СР и АК - биссектрисы углов А и С. Но и ВМ биссектриса треугольника АВС. Точка Т является точкой пересечения биссектрис треугольника АВС. ================================================================== Задача 5 Вершины А, В, С и Д куба АВСДА₁В₁С₁D₁ лежат на окружности. Точкa О - середина ребра АD. Хорда окружности проходит через точку О и параллельна отрезку АС . Вычислить длину этой хорды, если площадь поверхности куба равна 384 см² --------------------------------------- Обозначим концы хорды К и Р Проведем в окружности диаметр ВD, который является хордой и диагональю вписанного квадрата. Хорда КР делит диаметр на две части ВМ и МD. Так как КР содержит среднюю линию треугольника АDС, высота треугольника=радиус ЕD разделен в точке М пополам. MD=1/4 диаметра окружности, ВМ=3/4 диаметра Произведения отрезков каждой хорды, получившихся при пересечении этих хорд, равны. Диагонали квадрата при пересечении делятся пополам и перпендикулярны друг другу. Хорда параллельна диаметру. Диаметр делит хорду, к которой он перпендикулярен, пополам. Пусть КМ=МР=х Тогда х²=1/4 D×3/4 D=(3/16)D х=0,25√3 D КР=2х=0,5√3 D Длина диаметра окружности равна диагонали грани куба. Ребро куба найдем из площади его поверхности. Граней у куба 6, площадь каждой а²=384:6=64см² Ребро куба равно а= √64=8см Диагональ грани равна 8√2см (d=a√2 ) Длина хорды КР=(0,5√3)×8√2= 4√6 см
пусть A1 — середина ОА, В1 — середина ОВ и С1 — середина ОС.
Нам нужно доказать, что плоскость АВС параллельна плоскости А1В1С1
А1В1 — средняя линия треугольника АОВ, по определению. она соединяет середины сторон. по свойству сред линии треугольника она параллельна стороне АВ. Аналогично в треугольнике ВОС В1С1 — средняя линия параллельна стороне ВС.
Две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, значит плоскости параллельны. (в данном примере рассматриваем отрезки как части прямых)