М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baseke2018
baseke2018
26.08.2020 17:02 •  Математика

Водитель легк овой машины надо попасть из зареченская ивановка не позже семи часов вечера погода сегодня во сколько им надо стать введение вы что если носить онлайн перед отъездом ему необходимо 90 минут дороге он собирается делать число остановку на заправочной станции ехать будете скоростью 80 километров час

👇
Ответ:
ALINAscool9898
ALINAscool9898
26.08.2020
1)800/80=10 - часов составит путь                                                                               2) 10+90=11 часов 30 мин -это вмести сделана                                                             3)11 часов 30 мин +30 мин =12 часов
4,5(32 оценок)
Открыть все ответы
Ответ:
MrtMiyaGi
MrtMiyaGi
26.08.2020

Не может

Пошаговое объяснение:

По условию задачи на первом шаге полоску бумаги разрезали на три части: 1 --> 3.

Далее, на каждом шагу самую большую из полученных частей снова разрезали на три части (указываем в квадратной скобке):

1 --> 3 --> 2 + [1-->3] = 2 + 3 (= 5) -->  2 + 2 + [1-->3] = 2 + 2 + 3 (=7) -->

--> 2 + 2 + 2 + [1-->3] = 2 + 2 + 2 + 3 (=9) --> ... -->

--> 2 + 2 + 2 + ... + 2 + 3 (=199) --> 2 + 2 + 2 + ... + 2 + 2 + [1-->3] -->

--> 2 + 2 + 2 + ... + 2 + 2 + 3 (=201)

Как видно, после каждого разрезания получаем нечётное число частей. А число 200 чётное, и поэтому не могло в итоге получиться 200 частей!

4,7(71 оценок)
Ответ:
Kvodan123
Kvodan123
26.08.2020

Точка пересечения графика функции с осью координат Оу:  

График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x3+3x.

у =-0^3+3*0 = 0,

Результат: y=0. Точка: (0; 0).

Точки пересечения графика функции с осью координат Ох:  

График функции пересекает ось X при y=0, значит, нам надо решить уравнение:  

-x^3 + 3x= 0

Решаем это уравнение и его корни будут точками пересечения с осью Ох:

-x(x^2 – 3) = 0.

Получаем 3 точки: х = 0, х = √3 и х = -√3.

Результат: y=0. Точки: (0; 0), (√3; 0) и (-√3; 0).

Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y' = -3x^2 + 3 = 0

Решаем это уравнение и его корни будут экстремумами:  

-3(х^2-1) = 0,

х1 = 1,  х2  = -1.

Результат: точки: (1; 2) и (-1; -2).

Интервалы возрастания и убывания функции:  

Находится производная, приравнивается к 0, найденные точки выставляются на числовой прямой; к ним добавляются те точки, в которых производная не определена.  

На промежутках находим знаки производной

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

x = -2 -1 0 1 2

y' = -9 0 3 0 -9

• Минимум функции в точке: х = -1,

• Максимум функции в точке: х = 1.

• Возрастает на промежутке: (-1; 1).

• Убывает на промежутках: (-∞; -1) U (1; +∞).

Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции.  

Нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:  

y'' = -6x = 0.

Решаем это уравнение и его корни будут точками, где у графика перегибы:  

x=0. Точка: (0; 0).

Интервалы выпуклости, вогнутости:  

Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов.

Где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

• Вогнутая на промежутках: (-∞; 0),  

• Выпуклая на промежутках: (0; ∞).  

Вертикальные асимптоты – нет.  

Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соответствующие пределы находим:  

• lim -x3+3x, x->+∞ =- ∞, значит, горизонтальной асимптоты справа не существует

• lim -x3+3x, x->-∞ = ∞, значит, горизонтальной асимптоты слева не существует.

Наклонные асимптоты графика функции.  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:  

• lim -x3+3x/x, x->+∞ = -∞, значит, наклонной асимптоты справа не существует

• lim -x3+3x/x, x->-∞ = ∞, значит, наклонной асимптоты слева не существует

Четность и нечетность функции:  

Проверим функцию -  четна или нечетна с соотношений f(-x)=f(x) и f(-x)=-f(x). Итак, проверяем:  

• f(-x) = -(-x)3+3(-x) =  x3-3x  - нет f(-x) ≠ f(x).

• f(-x) = -(-x)3+3(-x)) = -(-x3+3x) – да f(-x)=-f(x), значит, функция является нечётной.


Полное исследование и построение графика функции ❤
4,4(77 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ