Испытание состоит в том, что из 20 вопросов выбирают 8.
n=C⁸₂₀=20!/((20-8)!·8!)=13·14·15·16·17·18·19·20/(2·3·4·5·6·7·8)=13·17·3·19·10=
=
Пусть событие А - " из восьми вопросов знает ответ на 5, не знает на три"
Событию А благоприятствуют исходы:
m=C⁵₁₄·C³₆ - пять вопросов из четырнадцати выученных и три вопроса из шести невыученных
m= (14!/(14-5)!·5!)· (6!/(6-3)!·3!)= ((10·11·12·13·14)/(2·3·4·5)) · (4·5·6/(2·3))=
=11·13·14·4·5
По формуле классической вероятности
p(A)=m/n=(11·13·14·4·5)/(13·17·3·19·10)=(11·14·2)/(17·3·19)=308/969
1) 6х+5у=6
2х+у=-2
из второго уравнения выразим у: у=-2-2х
и подставим в первое:
6х+5(-2-2х)=6
решим:
6х-10-10х=6
-4х-10=6
-4х=16
х=-4
найдем у, для этого подставим х во второе уравнение: 2*(-4)+у=-2; -8+у=-2; у=-2-(-8)=-2+8=6
проверка: (6*(-4)+5*6=6; 2*(-4)+6=-2
ответ: х=-4; у=6
2) 2(х+у)-х=-6
3х-(х-у)=0
расскроем скобки:
2х+2у-х=-6 ; х+2у=-6
3х-х+у=0; 2х+у=0
из первого выражаем х: х=-6-2у
подставляем во второе: 2(-6-2у)+у=0
решаем: -12-4у+у=0
-12-3у=0
3у=-12
у=-4
подставляем у в первое уравнение: х+2(-4)=-6; х-8=-6; х=2
проверка( 2(2-4)-2=4-8-2=-6; 3*2-(2+4)=6-2-4=0
ответ: х=2; у=-4
ответ:![z=\frac{2x\sqrt{y} }{\sqrt{1-x^4} }dx +\frac{arcsin(x^2)}{2\cdot\sqrt{y}}dy](/tpl/images/0232/8313/61a0e.png)
dz = (2x·cos(x²) - sin(2x))dx
Пошаговое объяснение:
Найти полный дифференциал функции
z = √(y)·arcsin(x²)
Формула полного дифференциала функции:
Найдем частные производные
Найти полный дифференциал функции
z = sin(x²) + cos²(x)
Так как функция z зависит только от одной переменной то формула полного дифференциала
Находим производную
z' = (sin(x²) + cos²(x))' = cos(x²)·(x²)' + 2cos(x)·(cos(x))' = 2x·cos(x²) - 2sin(x)·cos(x) = 2x·cos(x²) - sin(2x)
dz = (2x·cos(x²) - sin(2x))dx