Дано: 1, 2, 1000 - ряд натуральных чисел от 1 до 1000 2, 4, 6, 1000 - ряд чётных чисел. сумма данного ряда равна а. 1, 3, 5, 999 - ряд нечётных чисел. сумма данного ряда равна b. найти: b-a решение: а=2+4+6++1000 сумму данного ряда найдём с формулы суммы арифметической прогрессии. а₁=2, а₂=4 => d=a₂-a₁=4-2=2 a(n)=1000 n-? a(n)=a₁+d(n-1) 2+2(n-1)=1000 2(n-1)=998 n-1=499 n=500 s(n)=s(500)=(a₁+a₅₀₀)*500/2=(2+1000)*250=250500 следовательно, а=250500 аналогично, находим b - сумму ряда нечётных чисел: b=1+3+5++999 b₁=1, b₂=3 => d=b₂-b₁=2 b(n)=999 n-? b(n)=b₁+d(n-1) 1+2(n-1)=999 2(n-1)=998 n-1=499 n=500 s(n)=s(₅₀₀)=(b₁+b₅₀₀)*500/2=(1+999)*250=250000 следовательно, b=250000 b-a=250000-250500=-500 ответ: -500
Пусть 6 чисел будут а1,а2,а3,а4,а5 и а6. Тогда из условия следует, что 1) а1=0,5*(а2+а3) 2) а2=0,5(а3+а4) 3) а3=0,5(а4+а5) 4) а4=0,5(а5+а6) и ещё: 5) а6=а5+48 Подставим пятое уравнение в четвертое, получим а4=а5+24, это подставим в третье уравнение, получим а3=а5+12, это и предыдущее подставим во второе уравнение, получим а2=а5+18, это и предыдущее подставим в первое уравнение, получим а1=а5+15. Теперь мы из а6 вычтем а1, чтобы узнать их разницу, получаем: а6-а1=а5+48-а5-15=33 ответ: последнее число больше первого на 33.