Из поселка вышли одновременно в противоположных направлениях два пешехода.через 3 ч расстояние между было 27км.первый пешеход шел со средней скоростью 5км/ч.с какой скорость шел 2 пешеход ?
ДИСКРЕНАЯ МАТЕТАТИКА 1.1. Множества заданий множеств. 1. Проиллюстрируйте с кругов Эйлера высказывание: «Все учащиеся 5 класса присутствовали на школьной спартакиаде». Решение: Выделим множества, о которых идет речь в высказывании: это множество учащихся некоторой школы (обозначим его за А), и множество учащихся 5 класса (обозначим его В). В данном высказывании утверждается, что все элементы множества В являются также и элементами множества А. По определению отношения включения это означает, что В А. Поэтому множество В надо изобразить внутри круга, изображающего множество А. 2. Задайте множество другим если это возможно): а) А = {х| xN, х ≤ 9}; б) А = {-4, -3, -2, -1, 0, 1, 2, 3, 4}; в) А = {х| xR, х 2 – 3 = 0}. Решение: а) Элементами множества А являются натуральные числа, которые меньше 9 и само число 9, значит, А = {1, 2, 3, 4, 5, 6, 7, 8, 9}; б) А = {х| xZ, |x| ≤ 4} – множество целых чисел, модуль которых не больше четырех; в) Элементами множества А являются корни уравнения х 2 – 3 = 0, значит, А = {- 3 , 3 }. 3. Изобразите на координатной прямой перечисленные множества: а) А = {х| xR, -1,5 ≤ х ≤ 6,7}; б) М = {х| xN, 4х - 14 < 0}; в) С = {х| xZ, -5 < х <2}; г) Н = {х| xZ, |x| < 7}. Решение: ответы показаны на рисунке: а) А = [-1,5; 6,7] б) М = {1, 2, 3} в) С = (-5; 2) г) Н = {-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6} 4. Задайте числовое множество описанием характеристического свойства элементов: а) (0; 11); б) [-12,3; 1,1); в) [-5; 3]; г) (- ∞; -102,354]. Решение: а) А = {х| xR, 0 < х <11}; б) С = {х| xR, -12,3 ≤ х < 1,1}; в) А = {х| xR, -5 ≤ х ≤ 3}; г) Р = {х| xR, х ≤ -102,354}. 5. Даны множества: а) К = {у| у = 1, если уN, то у + 1N}, У = {у| уZ, у > 0}; б) К = Ø, У = {Ø}; в) К = {с, п, р}, У = {{с, п}, р }. Равны ли множества К и У
1) Весь маршрут = 1 (целая) 5/17 + 6/17 + 7/17 = 18/17 = 1 1/17 1 1/17 > 1 ⇒ турист сможет пройти весь маршрут за 3 дня ответ: да , сможет.
2) Натуральные числа - это числа от 1 до ∞ 1 8/9 < x/9 < 2 4/9 х∈N 17/9 < x/9 < 22/9 17 < x < 22 ⇒ x ∈(17 ; 22) Неравенство нестрогое , числовой промежуток открытый ⇒ концы открытого промежутка не являются решением неравенства и не включаются в ответ. ответ: х₁ = 18 , х₂= 19 , х₃= 20 , х₄= 21.
3) 13/(3х-5) х∈N Дробь неправильная ⇒ знаменатель больше или равен 1 , но меньше или равен 13 . 1≤(3х -5) ≤ 13 1≤3х - 5 ≤13 1+5 ≤3x<≤13+5 6≤ 3x<≤18 6/3 ≤ x ≤18/3 2 ≤ x≤6 ⇒ х∈ [ 2 ; 6 ] Неравенство строгое ⇒ концы промежутка включаются в ответ. ответ: х₁=2, х₂= 3, х₃= 4 , х₄=5 ,х₅= 6 .